Practical Variable Speed Drives and Power Electronics


Book Description

Typical practical applications of VSDs in process control and materials handling, such as those for pumping, ventilation, conveyers, compressors and hoists are covered in detail.·Provides a fundamental understanding of the installation, operation and troubleshooting of Variable Speed Drives (VSDs)·Includes practical coverage of key topics such as troubleshooting, control wiring, operating modes, braking types, automatic restart, harmonics, electrostatic discharge and EMC/EMI issues·Essential reading for electrical engineers and those using VSDs for applications such as pumping, ventilation, conveyors and hoists in process control, materials handling and other industrial contexts







Electromagnetic Interference and Electromagnetic Compatibility


Book Description

Electromagnetic compatibility is concerned with the generation, transmission, and reception of electromagnetic energy. The book discusses about the basic principles of electromagnetic interference (EMI) and electromagnetic compatibility (EMC) including causes, events, and mitigation of issues. The design procedures for EMI filter, the types of filters, and filter implementation methods are explained. The simulation of printed circuit board designs using different software and a step-by-step method is discussed in detail. This book addresses the gap between theory and practice using case studies with design, experiments, and supporting analysis. Features: Discusses about the basic principles of EMI/EMC including causes and events Makes readers understand the problems in different applications because of EMI/EMC and the reducing methods Explores real-world case studies with code to provide hands-on experience Reviews design strategies for mitigation of noise Includes MATLAB, PSPICE, and ADS simulations for designing EMI Filter circuits. The book is aimed at graduate students and researchers in electromagnetics, circuit and systems, and electrical engineering.




High Frequency Conducted Emission in AC Motor Drives Fed By Frequency Converters


Book Description

Provides a concise and thorough reference for designing electrical and electronic systems that employ adjustable speed drives Electrical and electronic systems that employ adjustable speed drives are being increasingly used in present-day automation applications. They are considered by many application engineers as one of the most interfering components, especially in a contemporarily faced industrial environment. This book fills the gap between the high-level academic knowledge in the electromagnetic compatibility (EMC) field and the recommended practical rules for assuring electromagnetic compatibility margin. It focuses on finding and formulating the issues that often occur with the generation and propagation of conducted emission in AC motor drives fed by frequency converters, rather than proposing specific solutions for dealing with them. It also features explanations of selected academic backgrounds of EMC and presents practical case studies. The book starts with an introduction to conducted emission in adjustable speed drives. It then goes on to offer in-depth chapters covering conducted emission origins in switch-mode power converters; conducted emission generation by frequency converter in adjustable speed drives (ASD); propagation of motor side originated conducted emission towards the power grid; modeling of conducted emission in ASD; broadband behavior of ASD components; and impact of a motor feeding cable on CM currents generated in ASD. In addition, this resource: Presents state-of-the-art analysis of undesirable high frequency phenomena accompanying AC motor speed control Discusses the fundamentals of phenomena of electromagnetic interference (EMI) generation in switch mode static converters Provides methodology of modeling-conducted EMI generation and propagation in ASD High Frequency Conducted Emission in AC Motor Drives Fed By Frequency Converters: Sources and Propagation Paths will appeal to scholars and a wide range of professionals who are involved in the stages of development, design, and application of adjustable speed drives in accordance with ever-increasing EMC requirements.




Power Electronics and Motor Drives


Book Description

Power Electronics and Motor Drives: Advances and Trends, Second Edition is the perfect resource to keep the electrical engineer up-to-speed on the latest advancements in technologies, equipment and applications. Carefully structured to include both traditional topics for entry-level and more advanced applications for the experienced engineer, this reference sheds light on the rapidly growing field of power electronic operations. New content covers converters, machine models and new control methods such as fuzzy logic and neural network control. This reference will help engineers further understand recent technologies and gain practical understanding with its inclusion of many industrial applications. Further supported by a glossary per chapter, this book gives engineers and researchers a critical reference to learn from real-world examples and make future decisions on power electronic technology and applications. - Provides many practical examples of industrial applications - Updates on the newest electronic topics with content added on fuzzy logic and neural networks - Presents information from an expert with decades of research and industrial experience




DSP-Based Electromechanical Motion Control


Book Description

Although the programming and use of a Digital Signal Processor (DSP) may not be the most complex process, utilizing DSPs in applications such as motor control can be extremely challenging for the first-time user. DSP-Based Electromechanical Motion Control provides a general application guide for students and engineers who want to implement DSP-base




Modern Electrical Drives


Book Description

Electrical drives lie at the heart of most industrial processes and make a major contribution to the comfort and high quality products we all take for granted. They provide the controller power needed at all levels, from megawatts in cement production to milliwatts in wrist watches. Other examples are legion, from the domestic kitchen to public utilities. The modern electrical drive is a complex item, comprising a controller, a static converter and an electrical motor. Some can be programmed by the user. Some can communicate with other drives. Semiconductor switches have improved, intelligent power modules have been introduced, all of which means that control techniques can be used now that were unimaginable a decade ago. Nor has the motor side stood still: high-energy permanent magnets, semiconductor switched reluctance motors, silicon micromotor technology, and soft magnetic materials produced by powder technology are all revolutionising the industry. But the electric drive is an enabling technology, so the revolution is rippling throughout the whole of industry.




Electric Drives, Second Edition


Book Description

Electric drives are everywhere, and with the looming promise of electric vehicles and renewable energy, they will become more complex and the demands on their capabilities will continue to increase. To keep up with these trends, students require hands-on knowledge and a keen understanding of the subtleties involved in the operation of modern electric drives. The best-selling first edition of Electric Drives provided such an understanding, and this Second Edition offers the same approach with up-to-date coverage of all major types of electric drives, both constant and variable speed. This book provides a self-contained treatment of low-, medium-, and large-power drives illustrated by numerous application examples, problems, digital simulation results, and test results for both steady state and dynamic operation. This edition features updated material in every chapter, including references; new material on AC brush series motors, capacitor-split inductor motors, single-phase PMSMs and switched reluctance motors, and tooth-wound PMSMs, all with numerical examples; new case studies on AC synchronous and induction motors; and a new chapter on control of electric generators. The companion CD-ROM features the full text, class slides for instructors, and MATLAB® simulations of 10 closed-loop drives, two of which are new to this edition. With a practical, hands-on approach, Electric Drives, Second Edition is the ideal textbook to help students design, simulate, build, and test modern electric drives, from simple to complex.




The Induction Machine Handbook


Book Description

Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on ind




Electric Drives


Book Description

Electric Drives provides a practical understanding of the subtleties involved in the operation of modern electric drives. The Third Edition of this bestselling textbook has been fully updated and greatly expanded to incorporate the latest technologies used to save energy and increase productivity, stability, and reliability. Every phrase, equation, number, and reference in the text has been revisited, with the necessary changes made throughout. In addition, new references to key research and development activities have been included to accurately reflect the current state of the art. Nearly 120 new pages covering recent advances, such as those made in the sensorless control of A.C. motor drives, have been added; as have two new chapters on advanced scalar control and multiphase electric machine drives. All solved numerical examples have been retained, and the 10 MATLAB®–Simulink® programs remain online. Thus, Electric Drives, Third Edition offers an up-to-date synthesis of the basic and advanced control of electric drives, with ample material for a two-semester course at the university level.