Electromagnetic Instabilities in an Inhomogeneous Plasma


Book Description

Electromagnetic Instabilities in an Inhomogeneous Plasma presents a comprehensive survey of the theory of electromagnetic instabilities in a magnetized inhomogeneous plasma, mainly in the classical approximation of straight and parallel magnetic field lines as well as magnetic-field curvature effects. Using his expertise and experience, the author skillfully guides the reader through the theory; presenting the most important results from leading Russian and Western scientists. This timely and important work will enable new or experienced researchers to improve their knowledge of this important field of plasma research.




Handbook on Plasma Instabilities


Book Description

Handbook on Plasma Instabilities, Volume 2 consists of four chapters on plasma instabilities. Chapter 14 discusses the various aspects of microinstabilities. Beam-plasma systems are covered in Chapter 15, while the various stabilization methods are presented in Chapter 16. This book concludes with deliberations on parametric effects in Chapter 17. Other topics discussed include the microinstabilities of a homogeneous unmagnetized plasma; kinetic theory of macroscopic instabilities; basic beam physics; and beam-plasma instabilities. The magnetic field configuration stabilization; macroscopic nonmagnetic stabilization methods; parametric instabilities in homogeneous unmagnetized plasmas; and parametric effects in bounded and inhomogeneous plasmas are also elaborated in this text. This publication is beneficial to students and researchers conducting work on unstable plasma.




The Interaction of Strong Electromagnetic Fields with Plasmas


Book Description

The range of plasma conditions considered here is intentionally broad, systematic and relevant to such areas as plasma heating, plasma acceleration, laser-plasma interaction, and plasma confinement. This volume presents the principle concepts of plasma physics - with an account of the linear theory of electromagnetic wave interaction - and then covers nonlinear processes with extensive treatment of the pondermotive force. Related experimental work is thoroughly reviewed.




Plasma Physics In Active Wave Ionosphere Interaction


Book Description

One essential feature of plasma media is supporting various plasma waves and dictating electromagnetic wave propagation. This textbook provides students with an understanding of plasma waves, which is key to theoretical and experimental plasma research and understanding the experimental results, and will enable them to expand their studies into related areas.The first part of the text provides the basis of plasma modes, including the formulations, analyses and the physical characterizations. The second part introduces techniques for the studies of wave propagation in inhomogeneous plasma and of nonlinear mode-mode coupling in turbulent plasma as well as in active plasma, applied to exemplify the excitation of parametric instabilities in high-frequency (HF) wave heated ionospheric plasma. The third part introduces nonlinear plasma waves of periodic function forms and of solitary forms; a potential application of the HF wave-ionosphere interaction for setting up an ionospheric very-low-frequency transmitter for underwater communications is introduced.This is also a useful reference book for researchers in the areas of plasma physics and engineering, and in geophysics.




Theory of Plasma Instabilities


Book Description




Kinetic Theory of Plasma Waves


Book Description

The book deals with the propagation and absorption of high frequency waves in plasmas. The text collects in a structured and self-contained way the basic knowledge on the broad and varied behavior of plasma waves, adopting the microscopic kinetic description of the plasma as unifying principle. The internal coherence of the theory is explicitly stressed, and interesting physical phenomena peculiar to plasmas are discussed in detail, including collisionless damping of waves, the development of stochasticity in the interactions of charged particles with electromagnetic waves, and nonlinear interactions between waves. The most common and useful approximations used in solving practical problems are derived as special cases from the more general kinetic approach, thereby clarifying their meaning and domain of applicability. This exposition should be useful to plasma physicists both as an introduction and a reference to this field of research.










Plasma Waves, 2nd Edition


Book Description

Extended and revised, Plasma Waves, 2nd Edition provides essential information on basic formulas and categorizes the various possible types of waves and their interactions. The book includes modern and complete treatments of electron cyclotron emission, collisions, relativistic effects, Landau damping, quasilinear and nonlinear wave theory, and tunneling equations. The broad scope encompasses waves in cold, warm, and hot plasmas and relativistic plasma waves. Special chapters deal with the effects of boundaries, inhomogeneities, and nonlinear effects. The author derives all formulae and describes several fundamental wave experiments, allowing for a greater appreciation of the subject.