Electromagnetic Optimization by Genetic Algorithms


Book Description

Authoritative coverage of a revolutionary technique for overcoming problems in electromagnetic design Genetic algorithms are stochastic search procedures modeled on the Darwinian concepts of natural selection and evolution. The machinery of genetic algorithms utilizes an optimization methodology that allows a global search of the cost surface via statistical random processes dictated by the Darwinian evolutionary concept. These easily programmed and readily implemented procedures robustly locate extrema of highly multimodal functions and therefore are particularly well suited to finding solutions to a broad range of electromagnetic optimization problems. Electromagnetic Optimization by Genetic Algorithms is the first book devoted exclusively to the application of genetic algorithms to electromagnetic device design. Compiled by two highly competent and well-respected members of the electromagnetics community, this book describes numerous applications of genetic algorithms to the design and optimization of various low- and high-frequency electromagnetic components. Special features include: * Introduction by David E. Goldberg, "A Meditation on the Application of Genetic Algorithms" * Design of linear and planar arrays using genetic algorithms * Application of genetic algorithms to the design of broadband, wire, and integrated antennas * Genetic algorithm-driven design of dielectric gratings and frequency-selective surfaces * Synthesis of magnetostatic devices using genetic algorithms * Application of genetic algorithms to multiobjective electromagnetic backscattering optimization * A comprehensive list of the up-to-date references applicable to electromagnetic design problems Supplemented with more than 250 illustrations, Electromagnetic Optimization by Genetic Algorithms is a powerful resource for electrical engineers interested in modern electromagnetic designs and an indispensable reference for university researchers.




Genetic Algorithms in Electromagnetics


Book Description

A thorough and insightful introduction to using genetic algorithms to optimize electromagnetic systems Genetic Algorithms in Electromagnetics focuses on optimizing the objective function when a computer algorithm, analytical model, or experimental result describes the performance of an electromagnetic system. It offers expert guidance to optimizing electromagnetic systems using genetic algorithms (GA), which have proven to be tenacious in finding optimal results where traditional techniques fail. Genetic Algorithms in Electromagnetics begins with an introduction to optimization and several commonly used numerical optimization routines, and goes on to feature: Introductions to GA in both binary and continuous variable forms, complete with examples of MATLAB(r) commands Two step-by-step examples of optimizing antenna arrays as well as a comprehensive overview of applications of GA to antenna array design problems Coverage of GA as an adaptive algorithm, including adaptive and smart arrays as well as adaptive reflectors and crossed dipoles Explanations of the optimization of several different wire antennas, starting with the famous "crooked monopole" How to optimize horn, reflector, and microstrip patch antennas, which require significantly more computing power than wire antennas Coverage of GA optimization of scattering, including scattering from frequency selective surfaces and electromagnetic band gap materials Ideas on operator and parameter selection for a GA Detailed explanations of particle swarm optimization and multiple objective optimization An appendix of MATLAB code for experimentation










Choice for Survival


Book Description

A thorough and insightful introduction to using genetic algorithms to optimize electromagnetic systems Genetic Algorithms in Electromagnetics focuses on optimizing the objective function when a computer algorithm, analytical model, or experimental result describes the performance of an electromagnetic system. It offers expert guidance to optimizing electromagnetic systems using genetic algorithms (GA), which have proven to be tenacious in finding optimal results where traditional techniques fail. Genetic Algorithms in Electromagnetics begins with an introduction to optimization and several commonly used numerical optimization routines, and goes on to feature: Introductions to GA in both binary and continuous variable forms, complete with examples of MATLAB(r) commands Two step-by-step examples of optimizing antenna arrays as well as a comprehensive overview of applications of GA to antenna array design problems Coverage of GA as an adaptive algorithm, including adaptive and smart arrays as well as adaptive reflectors and crossed dipoles Explanations of the optimization of several different wire antennas, starting with the famous "crooked monopole" How to optimize horn, reflector, and microstrip patch antennas, which require significantly more computing power than wire antennas Coverage of GA optimization of scattering, including scattering from frequency selective surfaces and electromagnetic band gap materials Ideas on operator and parameter selection for a GA Detailed explanations of particle swarm optimization and multiple objective optimization An appendix of MATLAB code for experimentation




Finite Elements-based Optimization


Book Description

This book is intended to be a cookbook for students and researchers to understand the finite element method and optimization methods and couple them to effect shape optimization. The optimization part of the book will survey optimization methods and focus on the genetic algorithm and Powell’s method for implementation in the codes. It will contain pseudo-code for the relevant algorithms and homework problems to reinforce the theory to compile finite element programs capable of shape optimization. Features Enables readers to understand the finite element method and optimization methods and couple them to effect shape optimization Presents simple approach with algorithms for synthesis Focuses on automated computer aided design (CAD) of electromagnetic devices Provides a unitary framework involving optimization and numerical modelling Discusses how to integrate open-source mesh generators into your code Indicates how parallelization of algorithms, especially matrix solution and optimization, may be approached cheaply using the graphics processing unit (GPU) that is available on most PCs today Includes coupled problem optimization using hyperthermia as an example




Optimization and Inverse Problems in Electromagnetism


Book Description

From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer science, applied mathematics (PhD level) and to researchers interested in the topic.




Differential Evolution in Electromagnetics


Book Description

Differential evolution has proven itself a very simple while very powerful stochastic global optimizer. It has been applied to solve problems in many scientific and engineering fields. This book focuses on applications of differential evolution in electromagnetics to showcase its achievement and capability in solving synthesis and design problems in electromagnetics.Topics covered in this book include:• A comprehensive up-to-date literature survey on differential evolution• A systematic description of differential evolution• A topical review on applications of differential evolution in electromagnetics• Five new application examplesThis book is ideal for electromagnetic researchers and people in differential evolution community. It is also a valuable reference book for researchers and students in the optimization or electrical and electronic engineering field. In addition, managers and engineers in relevant fields will find it a helpful introductory guide.







Genetic Algorithms in Search, Optimization, and Machine Learning


Book Description

A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.