Electromagnetics Explained


Book Description

Approx.410 pagesApprox.410 pages




Electromagnetics Explained


Book Description

Introduction and Survey of the Electromagnetic Spectrum; Fundamentals of Electric Fields; Fundamentals of Magnetic Fields; Electrodynamics; Radiation; Relativity and Quantum Physics; The Hidden Schematic; Transmission Lines; Waveguides and Shields; Circuits as Guides for Waves and S-Parameters; Antennas: How to Make Circuits That Radiate; EMC (Part I: Basics, Part II: PCB Techniques, Part III: Cabling); Lenses, Dishes, and Antenna Arrays; Diffraction; Frequency Dependence of Materials, Thermal Radiation, and Noise; Electrical Engineering Book Recommendations; Index.




Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®


Book Description

This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.




Electromagnetics for High-Speed Analog and Digital Communication Circuits


Book Description

Modern communications technology demands smaller, faster and more efficient circuits. This book reviews the fundamentals of electromagnetism in passive and active circuit elements, highlighting various effects and potential problems in designing a new circuit. The author begins with a review of the basics - the origin of resistance, capacitance, and inductance - then progresses to more advanced topics such as passive device design and layout, resonant circuits, impedance matching, high-speed switching circuits, and parasitic coupling and isolation techniques. Using examples and applications in RF and microwave systems, the author describes transmission lines, transformers, and distributed circuits. State-of-the-art developments in Si based broadband analog, RF, microwave, and mm-wave circuits are reviewed. With up-to-date results, techniques, practical examples, illustrations and worked examples, this book will be valuable to advanced undergraduate and graduate students of electrical engineering, and practitioners in the IC design industry. Further resources for this title are available at www.cambridge.org/9780521853507.




Electromagnetics


Book Description




Electromagnetics and Transmission Lines


Book Description

Electromagnetics and Transmission Lines Textbook resource covering static electric and magnetic fields, dynamic electromagnetic fields, transmission lines, antennas, and signal integrity within a single course Electromagnetics and Transmission Lines provides coverage of what every electrical engineer (not just the electromagnetic specialist) should know about electromagnetic fields and transmission lines. This work examines several fundamental electrical engineering concepts and components from an electromagnetic fields viewpoint, such as electric circuit laws, resistance, capacitance, and self and mutual inductances. The approach to transmission lines (T-lines), Smith charts, and scattering parameters establishes the underlying concepts of vector network analyzer (VNA) measurements. System-level antenna parameters, basic wireless links, and signal integrity are examined in the final chapters. As an efficient learning resource, electromagnetics and transmission lines content is strategically modulated in breadth and depth towards a single semester objective. Extraneous, distracting topics are excluded. The wording style is somewhat more conversational than most electromagnetics textbooks in order to enhance student engagement and inclusivity while conveying the rigor that is essential for engineering student development. To aid in information retention, the authors also provide supplementary material, including a homework solutions manual, lecture notes, and VNA experiments. Sample topics covered in Electromagnetics and Transmission Lines include: Vector algebra and coordinate systems, Coulomb’s law, Biot-Savart law, Gauss’s law, and solenoidal magnetic flux Electric potential, Ampere’s circuital law, Faraday’s law, displacement current, and the electromagnetic principles underlying resistance, capacitance, and self and mutual inductances The integral form of Maxwell’s equations from a conceptual viewpoint that relates the equations to physical understanding (the differential forms are also included in an appendix) DC transients and AC steady-state waves, reflections, and standing waves on T-lines Interrelationships of AC steady-state T-line theory, the Smith chart, and scattering parameters Antenna basics and line-of-sight link analysis using the Friis equation An introduction to signal integrity Electromagnetics and Transmission Lines is an authoritative textbook learning resource, suited perfectly for engineering programs at colleges and universities with a single required electromagnetic fields course. Student background assumptions are multivariable calculus, DC and AC electric circuits, physics of electromagnetics, and elementary differential equations.




Engineering Electromagnetics


Book Description

This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries. The new edition includes: modifications to about 30-40% of the end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The wealth of examples and alternative explanations makes it very approachable by students. More than 400 examples and exercises, exercising every topic in the book Includes 600 end-of-chapter problems, many of them applications or simplified applications Discusses the finite element, finite difference and method of moments in a dedicated chapter




Tour of the Electromagnetic Spectrum


Book Description




Electromagnetics Made Easy


Book Description

This book is intended to serve as an undergraduate textbook for a beginner’s course in engineering electromagnetics. The present book provides an easy and simplified understanding of the basic principles of electromagnetics. Abstract theory has been explained using real life examples making it easier for the reader to grasp the complicated concepts. An introductory chapter on vector calculus and the different coordinate systems equips the readers with the prerequisite knowledge to learn electromagnetics. The subsequent chapters can be grouped into four broad sections – electrostatics, magnetostatics, time varying fields, and applications of electromagnetics. Written in lucid terms, the text follows a sequential presentation of the topics, and discusses the relative merits and demerits of each method. Each chapter includes a number of examples which are solved rigorously along with pictorial representations. The book also contains about 400 figures and illustrations which help students visualize the underlying physical concepts. Several end-of-chapter problems are provided to test the key concepts and their applications. Thus the book offers a valuable resource for both students and instructors of electrical, electronics and communications engineering, and can also be useful as a supplementary text for undergraduate physics students.