Electromagneto-Mechanics of Material Systems and Structures


Book Description

Electromagneto-Mechanics of Material Systems and Structures Electromagneto-Mechanics of Material Systems and Structures Written by a leading expert, this book is a comprehensive introduction to the fundamentals and the state of the art in the electromagneto-mechanics of adaptive materials. Its varied topic range includes an overview on how electric, magnetic, and deformation fields interact with each other in the presence of advanced materials systems, such as electric conductors, dielectrics, ferromagnets, among others. Within this context, the author considers for each material system specific phenomena like vibrations, wave propagation, fracture, and fatigue. Readers will also gain a thorough understanding of applications in the electronics and nuclear energy industries, as well as in smart materials and MEMS. Covers a wide and varied range of subject areas, spanning theoretical, experimental, computational studies as well as industrial applications Features extensive applications in the electronics, nuclear engineering, smart materials and MEMS industries Takes the reader from fundamental concepts, applied research, applications through to emerging technologies Electromagneto-Mechanics of Material Systems and Structures is an all-in-one reference for advanced/graduate students in mechanical and electrical engineering, as well as materials science. It also serves as a handy refresher guide for engineers in related areas such as aeronautical and civil engineering.




Mechanics of Electromagnetic Material Systems and Structures


Book Description

In recent years, the science of electro-magneto-mechanics has developed rapidly because of its possible extensive practical applications in fields such as smart material systems and structures, microelectromechanical systems (MEMS), bio-medical devices, superconducting devices, and magnetic fusion reactors. volume features a selection of papers presented at the Symposium on Electro-Magneto-Mechanics that formed part of the 14th US National Congress of Theoretical and Applied Mechanics (USNCTAM 14). state-of-the-art fundamental research to applied research and applications in emerging technologies. They are divided under the following main headings: magnetoelasticity; piezoelectric fracture and damage mechanics; piezoelectric buckling, stability and vibration; and smart sensors and actuators.




Mechanics of Electromagnetic Materials and Structures


Book Description

This volume contains papers presented at the Symposium on the Mechanics of Electromagnetic Materials and Structures of the 1999 ASME Summer Meeting in Blacksburg, Virginia, USA. Topics covered include continuum modelling of deformable electromagnetic materials, magnetoelasticity and electroelasticity. Experimental, computational, and theoretical results are presented. The Symposium and the book are enriched by the participation of contributors from industries and presentations related to device applications.




Mechanics of Electromagnetic Solids


Book Description

The mechanics of electromagnetic materials and structures has been developing rapidly with extensive applications in, e. g. , electronics industry, nuclear engineering, and smart materials and structures. Researchers in this interdisciplinary field are with diverse background and motivation. The Symposium on the Mechanics of Electromagnetic Materials and Structures of the Fourth International Conference on Nonlinear Mechanics in Shanghai, China in August 13-16, 2002 provided an opportunity for an intimate gathering of researchers and exchange of ideas. This volume contains papers based on most of the presentations at the symposium, and articles from a few invited contributors. These papers reflect some of the recent activities in the mechanics of electromagnetic materials and structures. The first twelve papers are in the order in which they were listed in the program of the conference. These are followed by six invited papers in alphabetical order of the last names of the first authors. We would like to extend our sincere thanks to Professor David Y. Gao of Virginia Tech for suggesting the symposium, and to the authors for their time and effort invested in preparing their manuscripts. We are also grateful to Professor Daining Fang of Tsinghua University for co-chairing the symposium with J. S. Yang. Our special thanks belong to Kluwer for preparing this book for publication. J. S. Yang G. A. Maugin PIEZOELECTRIC VIBRATORY GYROSCOPES J. S.




Smart Material Systems


Book Description

This book describes several novel applications currently under investigation that exploit the unique actuator and sensor capabilities of smart material compounds. In addition to present and projected applications, this book provides comprehensive coverage of both linear and nonlinear modeling techniques necessary to characterize materials in a manner that facilitates transducer design and control development. The author focuses on ferroelectric, magnetic, and shape memory compounds and also addresses applications exploiting amorphous and ionic polymers, magnetorheological compounds, and fiber optic sensors. By providing a unified treatment of both linear and nonlinear characterization frameworks, Smart Material Systems: Model Development encompasses both low to moderate drive levels, which constitute the primary focus of most present texts, and the high drive regimes dictated by present and future applications. This will significantly enhance the design of transducers and control systems which exploit the unique actuator and sensor capabilities provided by smart material compounds.




Interdisciplinary Electromagnetic, Mechanic and Biomedical Problems


Book Description

The International Symposium on Applied Electromagnetics and Mechanics (ISEM) is an interdisciplinary international forum. This title concerns 12th event and was organized by following three institutions: Vienna Magnetics Group, TU BioMed - Society for Biomedical Engineering, Bioelectricity & Magnetism Lab; and the Vienna University of Technology.




Handbook of Electromagnetic Materials


Book Description

This Handbook explains basic concepts underlying electromagnetic properties of materials, addresses ways of deploying them in modern applications, and supplies pertinent data compiled for the first time in a single volume. Examples, including tables, charts, and graphs, are furnished from a practical applications view point of electromagnetic materials in various fields. These applications have grown enormously in recent years, pertinent to electromagnetic shields, radar absorbing materials, bioelectromagnetic phantoms, smart materials, electromagnetically active surfaces, exotic magnets, application-specific electrodes, and ferrites, etc.




Electromagnetic Processing of Materials


Book Description

This book is both a course book and a monograph. In fact, it has developed from notes given to graduate course students on materials processing in the years 1989 to 2006. Electromagnetic Processing of Materials (EPM), originates from a branch of materials science and engineering developed in the 1980s as a field aiming to create new materials and/or design processes by making use of various functions which appear when applying the electric and magnetic fields to materials. It is based on transport phenomena, materials processing and magnetohydrodynamics. The first chapter briefly introduces the history, background and technology of EPM. In the second chapter, the concept of transport phenomena is concisely introduced and in the third chapter the essential part of magnetohydrodynamics is transcribed and readers are shown that the concept of transport phenomena does not only apply to heat, mass and momentum, but also magnetic field. The fourth chapter describes electromagnetic processing of electrically conductive materials such as electromagnetic levitation, mixing, brake, and etc., which are caused by the Lorentz force. The fifth chapter treats magnetic processing of organic and non-organic materials such as magnetic levitation, crystal orientation, structural alignment and etc., which are induced by the magnetization force. This part is a new academic field named Magneto-Science, which focuses on the development of super-conducting magnets. This book is written so as to be understood by any graduate student in engineering courses but also to be of interest to engineers and researchers in industries.




Electromagnetism of Continuous Media


Book Description

The wide application of technologies in new mechanical, electronic and biomedical systems calls for materials and structures with non-conventional properties (e.g materials with 'memory'). Of equal importance is the understanding of the physical behaviour of these materials and consequently developing mathematical modelling techniques for prediction. This self contained text discusses the mathematical modelling used with these types of electromagnetic materials. It provides a carefully structured, coherent, and comprehensive treatment of electromagnetism of continuous media. The authors provide a systematic review of known subjects along with original results about thermodynamics of electromagnetic materials, well-posedness of initial boundary-value problems, variational settings, and wave propagation. Models of non-linear materials, non-local materials (superconductors), and hysteretic (magnetic) materials are also developed in detail.




Applications and Metrology at Nanometer Scale 1


Book Description

To develop innovations in quantum engineering and nanosystems, designers need to adopt the expertise that has been developed in research laboratories. This requires a thorough understanding of the experimental measurement techniques and theoretical models, based on the principles of quantum mechanics. This book presents experimental methods enabling the development and characterization of materials at the nanometer scale, based on practical engineering cases, such as 5G and the interference of polarized light when applied for electromagnetic waves. Using the example of electromechanical, multi-physical coupling in piezoelectric systems, smart materials technology is discussed, with an emphasis on scale reduction and mechanical engineering applications. Statistical analysis methods are presented in terms of their usefulness in systems engineering for experimentation, characterization or design, since safety factors and the most advanced reliability calculation techniques are included from the outset. This book provides valuable support for teachers and researchers but is also intended for engineering students, working engineers and MasterÂs students.