Electromanipulation of Cells


Book Description

Electromanipulation of Cells is the first comprehensive, balanced overview of this dynamic discipline. Edited by leading authorities in the field, the book surveys state-of-the-art research as well as recent practical applications of electric field technologies.




Electrical Manipulation of Cells


Book Description

Electrical Manipulation of Cells provides an authoritative and up-to-date review of the field, covering all the major techniques in a single source. The book features broad coverage that ranges from the mechanisms of action of external electrical fields on biological material to the ways in which electrical stimuli are employed to manipulate cells. Bringing together the work of leading international authorities, the book covers membrane breakdown, gene delivery, electroporation, electrostimulation, cell movement, hybridoma production, plant protoplasts, electrorotation and stimulation, and electromagnetic stimulation. For each topic, the authors discuss the relevance of the approach to the current state of the art of biotechnology. Electrical Manipulation of Cells is an unmatched source of information for anyone involved in the manipulation of cells, particularly biotechnologists, cell biology, microbiologists, biophysicists and plant scientists. For researchers, the book provides technical material that ccan be employed in their own work. Students will gain thorough appreciation of the applications of this important technique.




Microtechnology for Cell Manipulation and Sorting


Book Description

This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.




Electric Field-Induced Effects on Neuronal Cell Biology Accompanying Dielectrophoretic Trapping


Book Description

The concept of the cultured neuron probe was induced by the possible selective stimulation of nerves for functional recovery after a neural lesion or disease. The probe consists of a micro-electrode array on top of which groups of neuronal cells are cultured. An efficient method to position groups of neuronal cells on top of the stimulation sites of the micro-electrode array is developed. With negative dielectrophoretic forces, produced by non-uniform electric fields on polarizable particles, neuronal cells are trapped. Experimental results and model simulations describe the trapping process and its effect on neuronal cell viability.




Electromanipulation in Hybridoma Technology


Book Description

A manual that details the techniques of electrofusion and electroporation by researchers who were the first to show that the platelet membrane glycoproteins GP IIb and GP IIIa are associated in a complex which triggered interest in electrofusion.




Electroporation and Electrofusion in Cell Biology


Book Description

Cells can be funny. Try to grow them with a slightly wrong recipe, and they turn over and die. But hit them with an electric field strong enough to knock over a horse, and they do enough things to justify international meetings, to fill a sizable book, and to lead one to speak of an entirely new technology for cell manipulation. The very improbability of these events not only raises questions about why things happen but also leads to a long list of practical systems in which the application of strong electric fields might enable the merger of cell contents or the introduction of alien but vital material. Inevitably, the basic questions and the practical applications will not keep in step. The questions are intrinsically tough. It is hard enough to analyze the action of the relatively weak fields that rotate or align cells, but it is nearly impossible to predict responses to the cell-shredding bursts of electricity that cause them to fuse or to open up to very large molecular assemblies. Even so, theoretical studies and systematic examination of model systems have produced some creditable results, ideas which should ultimately provide hints of what to try next.




Physical Principles of Electro-Mechano-Biology


Book Description

This book covers the recently developed understanding of Electro-Mechano-Biology (EMB) in which the focus is primarily on the couplings between the electric and mechanical fields. The emphasis lies on the analytical and computational aspects of EMB at the cellular level. The book is divided into two parts. In the first part, the author starts by defining and discussing the relevant basic aspects of the electrical and mechanical properties of cell membranes. He provides an overview of some of the ways analytical modelling of cell membrane electrodeformation (ED) and electroporation (EP) appears in a variety of contexts as well as a contemporary account of recent developments in computational approaches that can feature in the theory initiative, particularly in its attempt to describe the cohort of activities currently underway. Intended to serve as an introductory text and aiming to facilitate the understanding of the field to non-experts, this part does not dwell on the set of topics, such as cellular mechanosensing and mechanotransduction, irreversible EP, and atomistic molecular dynamics modelling of membrane EP. The second (and larger) part of the book is devoted to a presentation of the necessary analytical and computational tools to illustrate the ideas behind EMB and illuminate physical insights. Brief notes on the history of EMB and its many applications describing the variety of ideas and approaches are also included. In this part, the background of the first principles and practical calculation methods are discussed to highlight aspects that cannot be found in a single volume.




Advances in Electromagnetic Fields in Living Systems


Book Description

This is the third volume in the series, in which the topic of the effects of radio frequencies on human tissue, now increasingly a concern with the prevalence of cell phones, is explored by Prof. Lin and other researchers. The impact of electromagnetics on imaging and cardiology, both very keen areas of research at present, is also explored.




Advances in Planar Lipid Bilayers and Liposomes


Book Description

Advances in Planar Lipid Bilayers and Liposomes, Volume 6, continues to include invited chapters on a broad range of topics, covering both main arrangements of the reconstituted system, namely planar lipid bilayers and spherical liposomes. The invited authors present the latest results in this exciting multidisciplinary field of their own research group. Many of the contributors working in both fields over many decades were in close collaboration with the late Prof. H. Ti Tien, the founding editor of this book series. There are also chapters written by some of the younger generation of scientists included in this series. This volume keeps in mind the broader goal with both systems, planar lipid bilayers and spherical liposomes, which is the further development of this interdisciplinary field worldwide. - Contributions from newcomers and established and experienced researchers - Exploring theoretically and experimentally the planar lipid bilayer systems and spherical liposomes - This volume is dedicated to mark the Bilayer Lipid Membranes 45th anniversary




Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems


Book Description

Although there is general agreement that exogenous electric and electromagnetic fields influence and modulate the properties of biological systems. there is no concensus regarding the mechanisms by which such fields operate. It is the purpose of this volume to bring together and examine critically the mechanistic models and concepts that have been proposed. We have chosen to arrange the papers in terms of the level of biological organization emphasized by the contributors. Some papers overlap categories. but the progression from ions and membrane surfaces. through macromolecules and the membrane matrix to integrated systems. establishes a mechanistic chain of causality that links the basic interactions in the relatively well understood simple systems to the complex living systems. where all effects occur simultaneously. The backgrounds of the invited contributors include biochemistry. biophysics. cell biology. electrical engineering. electrochemistry. electrophysiology. medicine and physical chemistry. As a result of this diversity. the mechanistic models reflect the differing approaches used by these disciplines to explain the same phenomena. Areas of agreement define the common ground. while the areas of divergence provide opportunities for refining our ideas through further experimentation. To facilitate the interaction between the different points of view, the authors have clearly indicated those published observations that they are trying to explain. i.e. the experiments that have been critical in their thinking. This should establish a concensus regarding important observations. In the discussion of theories.