Electromechanical Design Handbook


Book Description

A-Z guide to electrical/electronic and mechanical engineering design data. The ultimate sourcebook of electro-mechanical engineering design data is now better than ever, with thoroughly updated material, new discussions of engineering economics and elastomer springs. and a bounty of new drawings. Electro-Mechanical Design Handbook, Third Edition, by Ronald A. Walsh, gives you the know-how you need to develop parts, mechanisms, and assemblies, with thorough explanations of: *Properties, uses, and strength of engineering materials *Machine element design and mechanisms *Basic pneumatics, hydraulics, air handling and heat *Fastener and joining techniques *Layout and fabrication practices, including castings, moldings, extrusions and powder metal technology *Finishes and plating practices *Dimensioning and tolerancing practices *Much, much more!




Micro Electro Mechanical System Design


Book Description

It is challenging at best to find a resource that provides the breadth of information necessary to develop a successful micro electro mechanical system (MEMS) design. Micro Electro Mechanical System Design is that resource. It is a comprehensive, single-source guide that explains the design process by illustrating the full range of issues involved,




Design of Electromechanical Products


Book Description

Design, development and life-cycle management of any electromechanical product is a complex task that requires a cross-functional team spanning multiple organizations, including design, manufacturing, and service. Ineffective design techniques, combined with poor communication between various teams, often leads to delays in product launches, with last minute design compromises and changes. The purpose of Design of Electromechanical Products: A Systems Approach is to provide a practical set of guidelines and best practices for driving world-class design, development, and sustainability of electromechanical products. The information provided within this text is applicable across the entire span of product life-cycle management, from initial concept work to the detailed design, analysis, and development stages, and through to product support and end-of-life. It is intended for professional engineers, designers, and technical managers, and provides a gateway to developing a product’s design history file ("DHF") and device aster record ("DMR"). These tools enable design engineers to communicate a product’s design, manufacturability, and service procedures with various cross-functional teams.




Advanced Control Design with Application to Electromechanical Systems


Book Description

Advanced Control Design with Application to Electromechanical Systems represents the continuing effort in the pursuit of analytic theory and rigorous design for robust control methods. The book provides an overview of the feedback control systems and their associated definitions, with discussions on finite dimension vector spaces, mappings and convex analysis. In addition, a comprehensive treatment of continuous control system design is presented, along with an introduction to control design topics pertaining to discrete-time systems. Other sections introduces linear H1 and H2 theory, dissipativity analysis and synthesis, and a wide spectrum of models pertaining to electromechanical systems. Finally, the book examines the theory and mathematical analysis of multiagent systems. Researchers on robust control theory and electromechanical systems and graduate students working on robust control will benefit greatly from this book. - Introduces a coherent and unified framework for studying robust control theory - Provides the control-theoretic background required to read and contribute to the research literature - Presents the main ideas and demonstrations of the major results of robust control theory - Includes MATLAB codes to implement during research




Practical Magnetic and Electromechanical Design


Book Description

This book is written for students and practicing engineers involved in the design of magnetic and electromechanical devices. The material presented is a compilation of the practical approaches used over the author''s 37-year career at Eaton Research Labs and is intended to help the reader gain a "feel" for locations and strengths of magnetic fields and an intuitive insight into what magnetic fields do and how to use them. This book makes magnetics easy to understand and practical to apply in magnetic research, experimentation, and analysis of magnetic fields encountered in engineering challenges. Accurate and reliable methods are presented for the design of magnetic sensors, actuators, controls, and other electromechanical devices with the notable exclusion of rotating machines that are well covered by various authors and courses in university Electrical Engineering departments. Actuators, solenoids, and magnetic sensors have been around in various forms for over a century, and they are critical components of control and protection systems including relays and circuit breakers. This book has a strong foundation in the methods developed by H. C. Roters with additional topics in the areas of permanent magnet materials and permanent magnet performance in particular. The methodologies also take full advantage of complex spreadsheet capabilities, as well as finite element analysis as a counterpart to the calculations. Design examples include calculations for losses and temperature rise, which are critical for all electromagnetic systems. The smallest design usually has the highest temperature rise. The best design usually considers the trade-off between size and temperature rise. The design calculations presented are practical in the sense that they can be quickly and accurately applied in a spreadsheet model using the permeance method (also known as reluctance method or magnetic circuit method). The permeance method evaluates the magnetic field from the perspective of a magnetic circuit, analogous to an electric circuit. Chapter 1 describes this in detail and aims to provide an understanding of magnetic flux paths based on the simple question, "If I were a magnetic flux line, where would I go?" The accuracy of the permeance method is demonstrated with comparisons to measurements and finite element simulations. Practical methods also address the issues of time and effort. Some ideas need only "feasibility" level accuracy, while other design-specific challenges require high-level accuracy. This relates directly to budget and schedule issues on engineering projects. Increased effort (model detail, complexity, size, time) is needed to achieve increased accuracy. The best strategic approach is to use a method that is quick and provides enough accuracy to make a valid design decision. A spectrum of calculation methods can be considered 1) a hand calculation, 2) a simple spreadsheet model, 3) a complex spreadsheet model, 4) a 2D or axisymmetric finite element model, 5) a 3D finite element model. A spreadsheet model can also be used to quickly determine the starting size for a finite element model. A critical step for gaining confidence in the validity of any analysis is to check the results against those of a simple calculation. In general, when doing a complex analysis (such as a finite element simulation), the first step should be a simple calculation (such as a spreadsheet calculation) and a visualization of the magnetic field. The finite element simulation results can then be quickly reviewed for the shape of the magnetic field and the magnitude of the flux density, current and force, to judge if the results are reasonable. Finite element models have many input values and boundary conditions that are prone to typographical errors (such as a decimal point error, or a dimensional units error). Errors can be quickly detected when compared to a simple calculation and magnetic field visualization.




Electromechanical Design in Europe


Book Description

An assessment of research & applications in electro-mechanical product design in Europe. Design skills, methods, & tools are seen as strategically important by advanced companies & countries. Black & white drawings, charts.




Design of Electromechanical and Combination Products


Book Description

The second edition of this work, now with the expanded title of Design of Electromechanical and Combination Products, covers the design and development of electromechanical products, updated throughout to focus not only on an Agile Systems approach but also its application to disposables and consumables. Providing a practical set of guidelines and thorough examination of best practices, this book focuses on cutting-edge research on sustainability of electromechanical and combination products. Key Features Presents the design, development, and life cycle management of electromechanical and combination products Provides a practical set of guidelines and best practices for world-class design Explains the role of costing and pricing in product design Covers Design for X and its role in product life-cycle management Examines the dynamics of cross-functional design and product development teams Develops DHF and DMR as tools and inherent components of configuration management Includes numerous real-world examples of electromechanical and combination product designs This book is intended for scientists, engineers, designers, and technical managers, and provides a gateway to developing a product’s design history file (DHF) and device master record (DMR). These tools enable the design team to communicate a product’s design, manufacturability, and service procedures with various cross-functional teams.




Electromechanical Motion Systems


Book Description

An introductory reference covering the devices, simulations and limitations in the control of servo systems Linking theoretical material with real-world applications, this book provides a valuable introduction to motion system design. The book begins with an overview of classic theory, its advantages and limitations, before showing how classic limitations can be overcome with complete system simulation. The ability to efficiently vary system parameters (such as inertia, friction, dead-band, damping), and quickly determine their effect on performance, stability, efficiency, is also described. The author presents a detailed review of major component characteristics and limitations as they relate to system design and simulation. The use of computer simulation throughout the book will familiarize the reader as to how this contributes to efficient system design, how it avoids potential design flaws and saves both time and expense throughout the design process. The comprehensive coverage of topics makes the book ideal for professionals who need to apply theory to real-world situations, as well as students who wish to enhance their understanding of the topic. • Covers both theory and practical information at an introductory level, allowing readers to advance to further topics having obtained a strong grounding in the subject • Provides a connection between classic servo technology and the evolution of computer control and simulation • VisSim demonstration material available on an accompanying website enabling readers to experiment with system examples




Understanding Electro-Mechanical Engineering


Book Description

With a focus on electromechanical systems in a variety of fields, this accessible introductory text brings you coverage of the full range of electrical mechanical devices used today. You'll gain a comprehensive understanding of the design process and get valuable insights into good design practice. UNDERSTANDING ELECTROMECHANICAL ENGINEERING will be of interest to anyone in need of a non-technical, interdisciplinary introduction to the thriving field of mechatronics.




Mechatronics and Control of Electromechanical Systems


Book Description

Due to the enormous impact of mechatronics systems, we encounter mechatronics and micromechatronic systems in our daily activities. Recent trends and novel technologies in engineering have increased the emphasis on integrated analysis, design, and control. This book examines motion devices (actuators, motors, transducers and sensors), power electronics, controllers, and electronic solutions with the main emphasis placed on high-performance mechatronic systems. Analysis, design, optimization, control, and implementation issues, as well as a variety of enabling mechatronic systems and devices, are also covered. The results extend from the scope of mechatronic systems to the modern hardware-software developments, utilizing enabling solutions and placing the integrated system perspectives in favor of consistent engineering solutions. Mechatronics and Control of Electromechanical Systems facilitates comprehensive studies and covers the design aspects of mechatronic systems with high-performance motion devices. By combining traditional engineering topics and subjects with the latest technologies and developments, new advances are stimulated in design of state-of-the-art mechatronic systems. This book provides a deep understanding of the engineering underpinnings of integrated technologies.