Electromembrane Processes


Book Description

Electromembrane processes offer a multitude of applications, allowing for the recovery of water, other products, and energy. This book is a collection of contributions on recent advancements in electromembrane processes attained via experiments and/or models. The first paper is a comprehensive review article on the applications of electrodialysis for wastewater treatment, highlighting current status, technical challenges, and key points for future perspectives. The second paper focuses on ZSM-5 zeolite/PVA mixed matrix CEMs with high monovalent permselectivity for recovering either acid or Li+. The third paper regards direct numerical simulations of electroconvection in an electrodialysis dilute channel with forced flow under potentiodynamic and galvanodynamic regimes. The fourth paper investigates the reasons for the formation and properties of soliton-like charge waves in overlimiting conditions. The fifth paper focuses on the characterization of AEMs functionalized by surface modification via poly(acrylic) acid yielding monovalent permselectivity for reverse electrodialysis. In the sixth paper, CFD simulations of reverse electrodialysis systems are performed. The seventh paper proposes an integrated membrane process, including electrochemical intercalation–deintercalation, for the preparation of Li2CO3 from brine with a high Mg2+/Li+ mass ratio. Finally, the eighth paper is a perspective article devoted to the acid–base flow battery with monopolar and bipolar membranes.




Electromembrane Processes


Book Description

The book is a comprehensive view of all electromembrane processes, including electromembrane processes for energy conversion - a currently very significant problem. The necessary theory and basic information needed for understanding the technology are explained in Part I. Materials used for ion-selective membranes and seoaration processes are described in Part II, and the applications for synthesis and energy conversion in Part III.




Electromembrane Desalination Processes for Production of Low Conductivity Water


Book Description

Water of very low mineral content, i.e. low ionic conductivity, is required in many industrial processes and laboratory applications. The demand for total output volume and purity of such water has been significantly increasing during the last decades. Electromembrane processes provide a more sustainable and cost effective water purification compared to alternative processes like distillation and ion-exchange deionization. In the first part of the publication a review of processes used for deionization of water is presented and main physicochemical phenomena occurring in electromembrane processes will be discussed. The subsequent parts are devoted to the experimental verification of novel improvements for two electromembrane processes: electrodialysis and continuous electrodeionization. Considering electrodialysis, an investigation on ion-exchange membranes with profiled surfaces will be presented. It includes a section of appropriate membrane manufacturing procedures and desalination tests with profiled membranes. It turns out that electrodialysis with profiled ion-exchange membranes is superior to conventional electrodialysis with flat membranes and spacers, in particular with respect to desalination degree and reduced energy consumption. Considering continuous electrodeionization, experimental studies concerning improvements of continuous electrodeionization with bipolar membranes will be presented and discussed. Influence of ion-exchange membrane permselectivity on the product water quality is demonstrated and proposed improvements are aimed to reduce this influence. Concepts with a so-called protection compartment will be discussed and compared experimentally with a concept where the concentrate compartments are filled with ion exchange resin beads. It will be shown that improved continuous electrodeionization with bipolar membranes is able to produce ultrapure water in a quality comparable to conventional mixed-bed ion-exchangers but in a more cost effective and sustainable way.




Membrane Processes in Separation and Purification


Book Description

The current vigour in separations research principally derives from the need for pioneering separations processes in an emerging technology (biotechnology), from new societal emphases (reduction of chemical emissions into the environment), as well as from opportunities for achieving dramatic improvements in the efficiency of a number of manufacturing technologies through the development of a new generation of membranes (novel membrane applications). Accordingly, the contributions to this volume are grouped into `Membranes in Biotechnology' (11 papers), `Membranes in Environmental Technology' (6 papers), and `New Concepts' (4 papers). This is followed by one contribution each on `Energy Requirements' and `Education', i.e. membrane processes within an academic curriculum. The book thus amounts to a state-of-the-art review of applied membrane processes. Even though other texts have appeared in recent years, a more documented, practical book is needed, with a strong interaction with the collateral disciplines of materials sciences, life sciences and environmental science. This book emphasizes the need for such an integrated approach to membrane processes.




Electromembrane Processes: Experiments and Modelling


Book Description

Electromembrane processes offer a multitude of applications, allowing for the recovery of water, other products, and energy. This book is a collection of contributions on recent advancements in electromembrane processes attained via experiments and/or models. The first paper is a comprehensive review article on the applications of electrodialysis for wastewater treatment, highlighting current status, technical challenges, and key points for future perspectives. The second paper focuses on ZSM-5 zeolite/PVA mixed matrix CEMs with high monovalent permselectivity for recovering either acid or Li+. The third paper regards direct numerical simulations of electroconvection in an electrodialysis dilute channel with forced flow under potentiodynamic and galvanodynamic regimes. The fourth paper investigates the reasons for the formation and properties of soliton-like charge waves in overlimiting conditions. The fifth paper focuses on the characterization of AEMs functionalized by surface modification via poly(acrylic) acid yielding monovalent permselectivity for reverse electrodialysis. In the sixth paper, CFD simulations of reverse electrodialysis systems are performed. The seventh paper proposes an integrated membrane process, including electrochemical intercalation-deintercalation, for the preparation of Li2CO3 from brine with a high Mg2+/Li+ mass ratio. Finally, the eighth paper is a perspective article devoted to the acid-base flow battery with monopolar and bipolar membranes.




Comprehensive Membrane Science and Engineering


Book Description

Comprehensive Membrane Science and Engineering, Four Volume Set covers all aspects of membrane science and technology - from basic phenomena to the most advanced applications and future perspectives. Modern membrane engineering is critical to the development of process-intensification strategies and to the stimulation of industrial growth. The work presents researchers and industrial managers with an indispensable tool toward achieving these aims. Covers membrane science theory and economics, as well as applications ranging from chemical purification and natural gas enrichment to potable water Includes contributions and case studies from internationally recognized experts and from up-and-coming researchers working in this multi-billion dollar field Takes a unique, multidisciplinary approach that stimulates research in hybrid technologies for current (and future) life-saving applications (artificial organs, drug delivery)







Current Trends and Future Developments on (Bio-) Membranes


Book Description

Current Trends and Future Developments on (Bio-) Membranes: Membrane Desalination Systems: The Next Generation explores recent developments and future perspectives in the area of membrane desalination systems. It includes fundamental principles, the different types of smart nano-structured materials, energy and brine disposal issues, design approaches and the environmental impact of membrane desalination technology. The book provides an extensive review of literature in the area of membranes for desalination systems of low energy consumption and discusses the membrane modelling necessary for desalination system validation in achieving high water recovery, low energy and near-zero liquid discharge. - Outlines the use of the potential of salinity gradient power from brines for a low-energy desalination concept - Focuses on the development of integrated membrane systems to achieve the goal of near-zero-liquid-discharge - Summarizes the latest advancement in the nanosciences for creating membranes with advanced properties and functions




Advancement in Polymer-Based Membranes for Water Remediation


Book Description

Advancements in Polymer-Based Membranes for Water Remediation describes the advanced membrane science and engineering behind the separation processes within the domain of polymer-based membrane systems in water remediation. Emphasis has been put on several aspects, ranging from fundamental concepts to the commercialization of pressure and potential driven membranes, updated with the latest technological progresses, and relevant polymer materials and application potential towards water treatment systems. Also included in this book are advances in polymers for membrane application in reverse osmosis, nanofiltration, ultrafiltration, microfiltration, forward osmosis, and polymeric ion-exchange membranes for electrodialysis and capacitive deionization. With its critical analyzes and opinions from experts around the world, this book will garner considerable interest among actual users, i.e., scientists, engineers, industrialists, entrepreneurs and students. - Evaluates water remediation using pressure driven and potential driven membrane processes - Reviews emerging polymer systems for membranes preparation - Offers a comprehensive analysis in the development of polymer-based membranes and their applications in water remediation - Analyzes membrane performance parameters to evaluate separation efficiency for various water pollutants - Covers concept-to-commercialization aspects of polymer-based membranes in terms of water purification, pollutant removal, stability and scalability




Membrane Separations Technology


Book Description

The field of membrane separation technology is presently in a state of rapid growth and innovation. Many different membrane separation processes have been developed during the past half century and new processes are constantly emerging from academic, industrial, and governmental laboratories. While new membrane separation processes are being conceived with remarkable frequency, existing processes are also being constantly improved in order to enhance their economic competitiveness. Significant improvements are currently being made in many aspects of membrane separation technology: in the development of new membrane materials with higher selectivity and/or permeability, in the fabrication methods for high-flux asymmetric or composite membranes, in membrane module construction and in process design. Membrane separation technology is presently being used in an impressive variety of applications and has generated businesses totalling over one billion U.S. dollars annually.The main objective of this book is to present the principles and applications of a variety of membrane separation processes from the unique perspectives of investigators who have made important contributions to their fields. Another objective is to provide the reader with an authoritative resource on various aspects of this rapidly growing technology. The text can be used by someone who wishes to learn about a general area of application as well as by the knowledgeable person seeking more detailed information.