Electron Impact Ionization


Book Description

It is perhaps surprising that a process which was one of the first to be studied on an atomic scale, and a process which first received attention over seven decades ago, continues to be the object of diverse and intense research efforts. Such is the case with the (seemingly) conceptually simple and familiar mechanism of electron impact ionization of atoms, molecules, and ions. Not only has the multi-body nature of the collision given ground to theoretical effort only grudgingly, but also the variety and subtlety of processes contributing to ionization have helped insure that progress has come only with commensurate work: no pain - no gain. Modern experimental methods have made it possible to effectively measure and explore threshold laws, differential cross sections, partial cross sections, inner-shell ionization, and the ionization of unstable species such as radicals and ions. In most instances the availability of experimental data has provided impetus and guidance for further theoretical progress.




Atomic-Molecular Ionization by Electron Scattering


Book Description

Covers quantum scattering theories, experimental and theoretical calculations and applications in a comprehensive manner.




Electron Ionization


Book Description




Mass Spectrometry


Book Description

Mass Spectrometry is an ideal textbook for students and professionals as well as newcomers to the field. Starting from the very first principles of gas-phase ion chemistry and isotopic properties, the textbook takes the reader through the design of mass analyzers and ionization methods all the way to mass spectral interpretation and coupling techniques. Step-by-step, the reader learns how mass spectrometry works and what it can do. The book comprises a balanced mixture of practice-oriented information and theoretical background. It features a clear layout and a wealth of high-quality figures. Exercises and solutions are located on the Springer Global Web.




Gas Chromatography-Mass Spectrometry with Cold EI: Leading the Way to the Future of GC-MS


Book Description

Gas chromatography-mass spectrometry (GC-MS) with supersonic molecular beams (SMB) (also named GC-MS with Cold EI) is based on GC and MS interface with a SMB and on the electron ionization (EI) of vibrationally cold analytes in the SMB (hence the name Cold EI) in a contact-free fly-through ion source. Cold EI improves all the central GC-MS performance aspects and brings a broad range of important benefits thereby leading the way to the future of GC-MS. Cold EI provides enhanced molecular ions combined with effective library-basedsample identification. Sample identification is further improved by the use of powerful TAMI software that is based on isotope abundance analysis and improved quadrupole mass accuracy for the provision of the sample elemental formula from its molecular ion group of isotopologues.




Fundamentals of Contemporary Mass Spectrometry


Book Description

Modern mass spectrometry - the instrumentation and applications in diverse fields Mass spectrometry has played a pivotal role in a variety of scientific disciplines. Today it is an integral part of proteomics and drug discovery process. Fundamentals of Contemporary Mass Spectrometry gives readers a concise and authoritative overview of modern mass spectrometry instrumentation, techniques, and applications, including the latest developments. After an introduction to the history of mass spectrometry and the basic underlying concepts, it covers: Instrumentation, including modes of ionization, condensed phase ionization techniques, mass analysis and ion detection, tandem mass spectrometry, and hyphenated separation techniques Organic and inorganic mass spectrometry Biological mass spectrometry, including the analysis of proteins and peptides, oligosaccharides, lipids, oligonucleotides, and other biological materials Applications to quantitative analysis Based on proven teaching principles, each chapter is complete with a concise overview, highlighted key points, practice exercises, and references to additional resources. Hints and solutions to the exercises are provided in an appendix. To facilitate learning and improve problem-solving skills, several worked-out examples are included. This is a great textbook for graduate students in chemistry, and a robust, practical resource for researchers and scientists, professors, laboratory managers, technicians, and others. It gives scientists in diverse disciplines a practical foundation in modern mass spectrometry.




Introduction to Mass Spectrometry


Book Description

Completely revised and updated, this text provides an easy-to-read guide to the concept of mass spectrometry and demonstrates its potential and limitations. Written by internationally recognised experts and utilising "real life" examples of analyses and applications, the book presents real cases of qualitative and quantitative applications of mass spectrometry. Unlike other mass spectrometry texts, this comprehensive reference provides systematic descriptions of the various types of mass analysers and ionisation, along with corresponding strategies for interpretation of data. The book concludes with a comprehensive 3000 references. This multi-disciplined text covers the fundamentals as well as recent advance in this topic, providing need-to-know information for researchers in many disciplines including pharmaceutical, environmental and biomedical analysis who are utilizing mass spectrometry




Mass Spectrometry


Book Description

The latest edition of a highly successful textbook, Mass Spectrometry, Third Edition provides students with a complete overview of the principles, theories and key applications of modern mass spectrometry. All instrumental aspects of mass spectrometry are clearly and concisely described: sources, analysers and detectors. Tandem mass spectrometry is introduced early on and then developed in more detail in a later chapter. Emphasis is placed throughout the text on optimal utilisation conditions. Various fragmentation patterns are described together with analytical information that derives from the mass spectra. This new edition has been thoroughly revised and updated and has been redesigned to give the book a more contemporary look. As with previous editions it contains numerous examples, references and a series of exercises of increasing difficulty to encourage student understanding. Updates include: Increased coverage of MALDI and ESI, more detailed description of time of flight spectrometers, new material on isotope ratio mass spectrometry, and an expanded range of applications. Mass Spectrometry, Third Edition is an invaluable resource for all undergraduate and postgraduate students using this technique in departments of chemistry, biochemistry, medicine, pharmacology, agriculture, material science and food science. It is also of interest for researchers looking for an overview of the latest techniques and developments.




Optically Induced Nanostructures


Book Description

Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools.




Nonequilibrium Processes in Partially Ionized Gases


Book Description

The NATO . Advanced Research Insti tute on Nonequilibrium Processes in Partially Ionized Gases was held at Acquafredda di Maratea during 4-17 June 1989. The Institute considered the interconnections between scattering and transport theories and modeling of nonequilibrium systems generated by electrical discharges, emphasizing the importance of microscopic processes in affecting the bulk properties of plasmas. The book tries to reproduce these lines. In particular several contributions describe scattering cross sections involving electrons interacting with atoms and molecules in both ground and excited states (from theoretical and experimental point of view), of energy transfer processes as well as reactive ones involving excited molecules colliding with atoms and molecules as well as with metallic surfaces. Other contributions deal with the basis of transport theories (Boltzmann and Monte Carlo methods) for describing the bulk properties of non equilibrium plasmas as well as with the modeling of complicated systems emphasizing in particular the strong coupling between the Boltzmann equation and excited state kinetics. Finally the book contains several contributions describing applications in different fields such as Excimer Lasers, Negative Ion Production, RF Discharges, Plasma Chemistry, Atmospheric Processes and Physics of Lamps. The Organizing Committee gratefully acknowledges the generous financial support provided by the NATO Science Committee as well as by Azienda Autonoma di Soggiorno e Turismo of Maratea, by University of Bari, by C. N. R. (Centro di Studio per la Chimica dei Plasmi and Comitato per la Chimica), by ENEA, by Lawrence Livermore Laboratory and by US Army Research Office.