Electron Momentum Spectroscopy


Book Description

This book gives a complete account of electron momentum spectroscopy to date. It describes in detail the construction of spectrometers and the acquisition and reduction of cross-section data, explaining the quantum theory of the reaction and giving experimental verification.




X-Ray Spectroscopy in Atomic and Solid State Physics


Book Description

The fields of X-Ray Spectroscopy in Atomic and Solid State Physics have undergone spectacular growth, sometimes rather anarchic, during the past decade. The old mold of X-ray spectroscopy has been burst, and this ASI provided an in-depth exploration of theory and recently developed techniques; however, some work still needs to be done to create a new frame and reduce anarchy in the field. The purpose of this Institute was to gather atomic and solid state physicists working in theoretical and new experimental techniques recently developed. The lectures were concerned with, among others, the following fields: theory of X-ray near-edge structure, XPS and AES with conventional and synchrotron radiation sources, PIXE, EXAFS, SEXAFS, XRF, SXS, and molecular spectroscopy. The Institute considered in detail some of these experimental tech niques and the pertinent theoretical interpretations by selecting an important list of lectures which summarize the scientific contents of the ASI. The truly international character of this NATO ASI, its size, and the high quality of the lecturers contributed to make this school a very fruitful scientific meeting. Two to four general lectures were given each working day and three afternoons were reserved for presentation of current work in the form of posters. We think that these poster presentations reflect the current research work of the participants.




Coincidence Studies of Electron and Photon Impact Ionization


Book Description

The great advantage of coincidence measurements is that by suitable choice of the kinematical and geometrical arrangement one may probe delicate physical effects which would be swamped in less differential experiments. The measurement of the triple dif ferential and higher-order cross sections presents enormous technical difficulties, but refined experiments of this type provide an insight into the subtleties of the scattering process and offer a welcome, if severe, test of the available theoretical models. The last few years have been an exciting time to work in the field and much has been learned. Profound insights have been gleaned into the basic Coulomb few body problem in atomic physics: the experimental study of the fundamental (e,2e) processes on hydrogen and helium targets continues to add to our knowledge and indeed to challenge the best of our theoretical models; significant advances have been made in the understanding of the "double excitation problem," that is the study of ionization processes with two active target electrons: important measurements of (e,3e), (,),,2e), excitation-ionization and excitation autoionization have been reported and strides have been made in their theoretical description; the longstanding discrepancies between theory and experiment for relativistic (e,2e) processes were resolved, spin dependent effects predicted and ob served and the first successful coincidence experiments on surfaces and thin films were announced. Theory and experiment have advanced in close consort. The papers pre sented here cover the whole gambit of research in the field. Much has been achieved but much remains to be done.




Electron Waves in Solids


Book Description







Handbook of Spectroscopy


Book Description

This handbook provides a straightforward introduction to spectroscopy, showing what it can do and how it does it, together with a clear, integrated and objective account of the wealth of information that can be derived from spectra. The sequence of chapters covers a wide range of the electromagnetic spectrum, and the physical processes involved, from nuclear phenomena to molecular rotation processes. - A day-by-day laboratory guide: its design based on practical knowledge of spectroscopists at universities, industries and research institutes - A well-structured information source containing methods and applications sections framed by sections on general topics - Guides users to a decision about which spectroscopic method and which instrumentation will be the most appropriate to solve their own practical problem - Rapid access to essential information - Correct analysis of a huge number of measured spectra data and smart use of such information sources as databases and spectra libraries




Momentum Distributions


Book Description

This volume presents the proceedings of the Workshop on Momentum Distributions held on October 24 to 26, 1988 at Argonne National Laboratory. This workshop was motivated by the enormous progress within the past few years in both experimental and theoretical studies of momentum distributions, by the growing recognition of the importance of momentum distributions to the characterization of quantum many-body systems, and especially by the realization that momentum distribution studies have much in common across the entire range of modern physics. Accordingly, the workshop was unique in that it brought together researchers in nuclear physics, electronic systems, quantum fluids and solids, and particle physics to address the common elements of momentum distribution studies. The topics dis cussed in the workshop spanned more than ten orders of magnitude range in charac teristic energy scales. The workshop included an extraordinary variety of interactions from Coulombic to hard core repulsive, from non-relativistic to extreme relativistic.




X-Ray Compton Scattering


Book Description

With the development of potent x-ray sources at many synchrotron laboratories worldwide, Compton scattering has become a standard tool for studying electron densities in materials. This book provides condensed matter and materials physicists with an authoritative, up-to-date, and very accessible account of the Compton scattering method, leading to a fundamental understanding of the electrical and magnetic properties of solid materials. The spectrum of Compton scattered x-rays is particularly sensitive to this behaviour and thus can be used as a direct probe and to test the predictions of theory. The current generation of synchrotron facilities allows this method to be readily exploited to study the ground state electron density in both elements and in complex compounds. It is important that those working in related fields, as well as the increasing number directly using the Compton method, have a comprehensive assessment of what is now possible and how to achieve it, in addition to a full understanding of its theoretical basis. This monograph is unique and timely, since little of what is described, was practicable a decade ago. The development of synchrotron radiation facilities has ensured that the technique described here will remain a powerful probe of electron charge and spin density for many years to come.




Core Level Spectroscopy of Solids


Book Description

Core level spectroscopy has become a powerful tool in the study of electronic states in solids. From fundamental aspects to the most recent developments, Core Level Spectroscopy of Solids presents the theoretical calculations, experimental data, and underlying physics of x-ray photoemission spectroscopy (XPS), x-ray absorption spectroscopy (XAS), x




Solid-State Photoemission and Related Methods


Book Description

Photoemission is one of the principal techniques for the characterization and investigation of condensed matter systems. The field has experienced many developments in recent years, which may also be put down to important achievements in closely related areas. This timely and up-to-date handbook is written by experts in the field who provide the background needed by both experimentalists and theorists. It represents an interesting framework for showing the connection between theory and experiment by bringing together different concepts in the investigation of the properties of materials. The work addresses the geometric and electronic structure of solid surfaces and interfaces, theoretical methods for direct computation of spectra, experimental techniques for data acquisition, and physical models for direct data interpretation. It also includes such recent developments as full hemisphere acceptance in photoemission, two-electron photoemission, (e, 2e) electron diffraction, and photoelectron-electron/hole interaction.