Electron Paramagnetic Resonance of Exchange Coupled Systems


Book Description

This book is intended to collect in one place as much information as possible on the use of EPR spectroscopy in the analysis of systems in which two or more spins are magnetically coupled. This is a field where research is very active and chemists are elbow-to-elbow with physicists and biologists in the forefront. Here, as in many other fields, the contributions coming from different disciplines are very important, but for active researchers it is sometimes difficult to follow the literature, due to differences in languages, and sources which are familiar to, e. g. , a physicist, are exotic to a chemist. Therefore, an effort is needed in order to provide a unitary description of the many different phenomena which are collected under the title. In order to define the arguments which are treated, it is useful to state clearly what is not contained here. So we do not treat magnetic phenomena in conductors and we neglect ferro- and antiferromagnetic resonance. The basic foundations of EPR spectroscopy are supposed to be known by the reader, while we introduce the basis of magnetic interactions between spins. In the first two chapters we review the foundations of exchange interactions, trying to show how the magnetic parameters are bound to the electronic structure of the interacting centers.




EPR of Exchange Coupled Systems


Book Description

The expert authors of this monograph and professional reference include Dante Gatteschi, a pioneer of molecular magnetism. Based on the spin Hamiltonian approach, this unified treatment makes extensive use of irreducible tensor techniques to analyze systems in which two or more spins are magnetically coupled. 177 figures, 38 tables, and a new Introduction by Dr. Gatteschi. 1990 edition.




Electron Paramagnetic Resonance


Book Description

Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.




EPR of Exchange Coupled Systems


Book Description

From chemistry to solid state physics to biology, the applications of Electron Paramagnetic Resonance (EPR) are relevant to many areas. This unified treatment is based on the spin Hamiltonian approach and makes extensive use of irreducible tensor techniques to analyze systems in which two or more spins are magnetically coupled. This edition contains a new Introduction by coauthor Dante Gatteschi, a pioneer and scholar of molecular magnetism. The first two chapters review the foundations of exchange interactions, followed by examinations of the spectra of pairs and clusters, relaxation in oligonuclear species, approaches to infinite lattices, and how EPR can provide firsthand information on spin dynamics. Subsequent chapters explore experimental data, magnetically coupled systems, low-dimensional materials, and the use of EPR to characterize excitons and exciton motion. More than 200 figures and tables appear throughout the book, which concludes with a pair of helpful appendices.




Biomolecular EPR Spectroscopy


Book Description

Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction t




Electron Paramagnetic Resonance Spectroscopy


Book Description

Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.




Electron Paramagnetic Resonance: Volume 27


Book Description

Electron paramagnetic resonance (EPR) applications remain highly significant in modern analytical science and this volume compiles critical coverage of developments in the recent literature. The topics covered in this volume describe contrasting types of EPR application, including rapid scan EPR, using the EPR toolkit to investigate the structural dynamics of membrane proteins and pulse dipolar EPR spectroscopy for investigating biomolecular binding events. An additional chapter reviewing the PARACAT collaboration from the EU has also been included. Providing a snapshot of the area by a handpicked group of researchers at the cutting-edge of the field, this book is a useful addition to any library supporting this research.




EPR Spectroscopy


Book Description

This unique, self-contained resource is the first volume on electron paramagnetic resonance (EPR) spectroscopy in the eMagRes Handbook series. The 27 chapters cover the theoretical principles, the common experimental techniques, and many important application areas of modern EPR spectroscopy. EPR Spectroscopy: Fundamentals and Methods is presented in four major parts: A: Fundamental Theory, B: Basic Techniques and Instrumentation, C: High-Resolution Pulse Techniques, and D: Special Techniques. The first part of the book gives the reader an introduction to basic continuous-wave (CW) EPR and an overview of the different magnetic interactions that can be determined by EPR spectroscopy, their associated theoretical description, and their information content. The second provides the basics of the various EPR techniques, including pulse EPR, and EPR imaging, along with the associated instrumentation. Parts C and D builds on parts A and B and offer introductory accounts of a wide range of modern advanced EPR techniques, with examples of applications. The last two parts presents most of the new advances that do not appear in most of the classical EPR textbooks that focus on CW EPR. EPR Spectroscopy: Fundamentals and Methods contains, in concise form, all the material needed to understand state-of-the-art EPR spectroscopy at the graduate school/research level, whilst the editors have ensured that it presents the topic at a level accessible to newcomers to the field and others who want to know its range of application and how to apply it.




Electron Paramagnetic Resonance


Book Description

Electron Paramagnetic Resonance (EPR) highlights major developments in this area, with results being set into the context of earlier work and presented as a set of critical yet coherent overviews. The topics covered describe contrasting types of application, ranging from biological areas such as EPR studies of free-radical reactions in biology and medically-related systems, to experimental developments and applications involving EPR imaging, the use of very high fields, and time-resolved methods. Critical and up-to-the-minute reviews of advances involving the design of spin-traps, advances in spin-labelling, paramagnetic centres on solid surfaces, exchange-coupled oligomers, metalloproteins and radicals in flavoenzymes are also included. As EPR continues to find new applications in virtually all areas of modern science, including physics, chemistry, biology and materials science, this series caters not only for experts in the field, but also those wishing to gain a general overview of EPR applications in a given area.




Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part A


Book Description

Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part A & B, are the latest volumes in the Methods in Enzymology series, continuing the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods centered on the use of Electron Paramagnetic Resonance (EPR) techniques to study biological structure and function. - Timely contribution that describes a rapidly changing field - Leading researchers in the field - Broad coverage: Instrumentation, basic theory, data analysis, and applications