Electron-Stream Interaction with Plasmas


Book Description

This study considers the instabilities that result when an electron beam is injected into a plasma. A number of different models of the system are considered, and all instabilities are classified according to whether they are convective instabilities (amplifying waves) or nonconvective (absolute) instabilities. The study also analyzes the instabilities in unbounded beam-plasma systems and in systems of finite extent transverse to the electron stream and gives a detailed consideration of the possibility of a strong interaction with the ions in a hot-electron plasma. In addition, the author presents mathematical criteria for identifying absolute instabilities and amplifying waves. These criteria are based only on an analysis of the dispersion equation of the system and are not restricted to beam-plasma systems.Two things need to be said about this book: the chapter on absolute and convective instabilities makes an important contribution to the field. Second, it should be pointed out that the theoretical results are reduced to a form which make them readily available to an experimentalist. Plasma physicists and electronic engineers will be interested in this work.




Electron Beams in a Plasma


Book Description

This book contains information on scientific research and applications of a very diverse field of low temperature plasma physics – the interaction of electron beams with plasma and, as a consequence of this interaction, a beam plasma discharge. It contains detailed descriptions of the history of the relevant research, a review of experimental research of properties of the low-temperature plasma with an electron beam and beam plasma discharge, and presents the main results of beam plasma interaction theory. Most of the book is devoted to descriptions of applications of the plasma with a beam and beam plasma discharge in a variety of fields; from studies of the physics of near-Earth space using active geophysical experiments to the development of materials technologies for micro- and nanoelectronics and designs of plasma-filled electronic devices. This book will be useful as an introduction to this field for undergraduate and graduate students specializing in plasma physics, as well as for other specialists in various fields of physics and technologies.




Relation Between Laboratory and Space Plasmas


Book Description

This book contains the lectures presented at the International Workshop on Relation between Laboratory and Space Plasmas held at Gakushi-Kaikan (University Alumni Association) Kanda in Tokyo, Japan on 14 - 15 April, 1980. Its aim was to bring together laboratory, fusion and space plasma physicists and to highlight the communality of basic plasma phenomena, similarities and differences observed in the laboratory and in space, thus exchanging information tnd views on new ideas to link both areas. Although similar type of conferences were held in Europe and recently in the States, this is the first time we have had in Japan for such an international meeting, which may be regarded as an extended version of our national Workshop held twice at the Institute of Plasma Physics of Japan (IPPJ) in 1976 and in 1977 (IPPJ Research Report No. 286 and No. 365). The Workshop consisted of seven regular sessions and one special session with approximately ninety participants from allover the world. Thirty-six papers, invited and contributed, were presented, nine from U. S. A., three from U. S. S. R., two of each from Germany, France, India, one of each from Sweden, Canada, Belgium and fifteen from Japan. The topics covered were: (1) The Critical Velocity (2) Beam Plasma Discharges and Interactions (3) Double Layers and Shocks (4) Instabilities in the Equatorial and Auroral Electrojets (5) Turbulent and Anomalous Plasmas (6) Plasma Irregularities (7) Solar Plasma Phenomena (8) Active Experiments in Space Plasmas and Their Simulation in the Laboratory.




NASA Technical Note


Book Description




Plasma and Current Instabilities in Semiconductors


Book Description

Plasma and Current Instabilities in Semiconductors details the main ideas in the physics of plasma and current instabilities in semiconductors. The title first covers plasma in semiconductors, and then proceeds to tackling waves in plasma. Next, the selection details wave instabilities in plasma and drift instabilities. The text also discusses hot electrons, along with the instabilities due to inter-valley electron transfer. The next chapters talks about avalanche and recombination instabilities. The last chapter deals with plasma streams. The book will be of great use to student and professional electronics engineers and technicians.




Fluctuations and Non-Linear Wave Interactions in Plasmas


Book Description

Fluctuations and Non-linear Wave Interactions in Plasmas talks about a theory of fluctuations in a homogenous plasma. The title takes into consideration non-linear wave interactions. The text first presents the statistical description of plasma, and then proceeds to covering non-linear electrodynamic equations. Next, the selection deals with the electrodynamic properties of magento-active plasma and waves in plasma. The text also tackles non-linear wave interactions, along with fluctuations in plasmas. The next chapter talks about the effect of non-linear wave interaction on fluctuations in a plasma. Chapter 8 details fluctuation-dissipation theorem, while Chapter 9 discusses kinetic equations. The tenth chapter covers the scattering and radiation of waves and the last chapter tackles wave interaction in semi-bounded plasma. The book will be of great use to scientists and professionals who deals with plasmas.




Interaction of Electromagnetic Waves with Electron Beams and Plasmas


Book Description

The interaction of electromagnetic waves with matter has always been a fascinating subject of study. As matter in the universe is mostly in the plasma state, the study of electromagnetic waves in plasmas is of importance to astrophysics, space physics and ionospheric physics. The physics of electromagnetic wave interacting with electron beams and plasmas also serves as a basis for coherent radiation generation such as free electron laser and gyrotron and advanced accelerators. This monograph aims at reviewing the physical processes of linear and nonlinear collective interactions of electromagnetic waves with electron beams and unmagnetized plasmas.




Electrodynamics Of Particles And Plasmas


Book Description

First Published in 2018. Routledge is an imprint of Taylor & Francis, an Informa company.




Fundamentals Of Theoretical Plasma Physics: Mathematical Description Of Plasma Waves


Book Description

This book is written as a senior undergraduate and graduate textbook of theoretical plasma physics; topics include Boltzmann equation, two-fluid equations, magnetohydrodynamics, Vlasov-Maxwell Plasma, absolute and convective instabilities, fundamental kinetic theory, Lenard-Balescu equation, electric fluctuation, plasma electrodynamics and causality, nonlinear waves, inverse scattering method, surface waves, and dusty plasma. It also includes special topics like parametric instabilities and kinetic theory of surface waves in a plasma slab.The development of theory is presented through gentle mathematical steps through easy and straightforward demonstration. The readers will be able to appreciate the beauty of mathematical analysis in connection with theoretical plasma physics.