Electronic Design Automation Frameworks


Book Description

Design frameworks have become an important infrastructure for building complex design systems. Electronic Design Automation Frameworks presents a state-of-the-art review of the latest research results covering this topic; results which are also of value for other design frameworks. The book contains the selected proceedings of the Fourth International Working Conference on Electronic Design Frameworks, organized by the International Federation for Information Processing and held in Gramado, Brazil, in November 1994.




Electronic Design Automation Frameworks


Book Description

Many of the advances achieved in framework technology during the last five years are reported in this volume. However, despite acknowledged developments and an enormous investment by the Computer-Aided Design (CAD) vendor industry and others, commercial framework products have been slow to appear on the market. Further, those which have appeared, have largely failed to meet original targets, whether in terms of scope or performance or both. Reaching a consensus on new international standards has been a painfully slow process, with rapid advances in technology often rendering new standards out of date even before their eventual appearance. A motivation for agreement on technical issues, not yet fully understood or researched, will be vital if a commercial basis to underpin future development is to be achieved. It is hoped this book will stimulate interchange between researchers, developers and users so that practical progress can be made, backed by the strong support of interested industries.




Electronic Design Automation Frameworks


Book Description

During the last decade the field of electronic design automation has changed from a small industry offering a random sampling of commercial and academic design automation tools, to a significant industry comprising offerings ranging from individual tools to total design systems, all based upon a set of emerging standards. Workers in electronic design automation are active in the development of integrated design environments and therefore in the development of frameworks. Frameworks for electronic design automation are rather similar to those for mechanical or software engineering, however the class of tools may differ resulting in differing specific requirements for the services to be offered. The present book documents the results of the 2nd Workshop on electronic design automation frameworks. The question of standardization is of special interest within the book, especially as related to VHDL, EDIF, PDES, and CFI. Also included are discussions of the role of specialized languages for specific environments, and how the user community can help standards to evolve.




Design Automation, Languages, and Simulations


Book Description

As the complexity of electronic systems continues to increase, the micro-electronic industry depends upon automation and simulations to adapt quickly to market changes and new technologies. Compiled from chapters contributed to CRC's best-selling VLSI Handbook, this volume of the Principles and Applications in Engineering series covers a broad rang




Computer Aided Design and Design Automation


Book Description

This volume of The Circuits and Filters Handbook, Third Edition focuses on computer aided design and design automation. In the first part of the book, international contributors address topics such as the modeling of circuit performances, symbolic analysis methods, numerical analysis methods, design by optimization, statistical design optimization, and physical design automation. In the second half of the text, they turn their attention to RF CAD, high performance simulation, formal verification, RTK behavioral synthesis, system-level design, an Internet-based micro-electronic design automation framework, performance modeling, and embedded computing systems design.




Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology


Book Description

The second of two volumes in the Electronic Design Automation for Integrated Circuits Handbook, Second Edition, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology thoroughly examines real-time logic (RTL) to GDSII (a file format used to transfer data of semiconductor physical layout) design flow, analog/mixed signal design, physical verification, and technology computer-aided design (TCAD). Chapters contributed by leading experts authoritatively discuss design for manufacturability (DFM) at the nanoscale, power supply network design and analysis, design modeling, and much more. New to This Edition: Major updates appearing in the initial phases of the design flow, where the level of abstraction keeps rising to support more functionality with lower non-recurring engineering (NRE) costs Significant revisions reflected in the final phases of the design flow, where the complexity due to smaller and smaller geometries is compounded by the slow progress of shorter wavelength lithography New coverage of cutting-edge applications and approaches realized in the decade since publication of the previous edition—these are illustrated by new chapters on 3D circuit integration and clock design Offering improved depth and modernity, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology provides a valuable, state-of-the-art reference for electronic design automation (EDA) students, researchers, and professionals.




Electronic CAD Frameworks


Book Description

When it comes to frameworks, the familiar story of the elephant and the six blind philosophers seems to apply. As each philoso pher encountered a separate part of the elephant, each pronounced his considered, but flawed judgement. One blind philosopher felt a leg and thought it a tree. Another felt the tail and thought he held a rope. Another felt the elephant's flank and thought he stood before a wall. We're supposed to learn about snap judgements from this alle gory, but its author might well have been describing design automation frameworks. For in the reality of today's product development requirements, a framework must be many things to many people. xiv CAD Frameworks: Integration Technology for CAD As the authors of this book note, framework design is an optimi zation problem. Somehow, it has to be both a superior rope for one and a tremendous tree for another. Somehow it needs to provide a standard environment for exploiting the full potential of computer-aided engineering tools. And, somehow, it has to make real such abstractions as interoperability and interchangeability. For years, we've talked about a framework as something that provides application-oriented services, just as an operating system provides system-level support. And for years, that simple statement has hid the tremendous complexity of actually providing those services.




Machine Learning Applications in Electronic Design Automation


Book Description

​This book serves as a single-source reference to key machine learning (ML) applications and methods in digital and analog design and verification. Experts from academia and industry cover a wide range of the latest research on ML applications in electronic design automation (EDA), including analysis and optimization of digital design, analysis and optimization of analog design, as well as functional verification, FPGA and system level designs, design for manufacturing (DFM), and design space exploration. The authors also cover key ML methods such as classical ML, deep learning models such as convolutional neural networks (CNNs), graph neural networks (GNNs), generative adversarial networks (GANs) and optimization methods such as reinforcement learning (RL) and Bayesian optimization (BO). All of these topics are valuable to chip designers and EDA developers and researchers working in digital and analog designs and verification.




Cad Frameworks


Book Description

Since the early 1980s, CAD frameworks have received a great deal of attention, both in the research community and in the commercial arena. It is generally agreed that CAD framework technology promises much: advanced CAD frameworks can turn collections of individual tools into effective and user-friendly design environments. But how can this promise be fulfilled? CAD Frameworks: Principles and Architecture describes the design and construction of CAD frameworks. It presents principles for building integrated design environments and shows how a CAD framework can be based on these principles. It derives the architecture of a CAD framework in a systematic way, using well-defined primitives for representation. This architecture defines how the many different framework sub-topics, ranging from concurrency control to design flow management, relate to each other and come together into an overall system. The origin of this work is the research and development performed in the context of the Nelsis CAD Framework, which has been a working system for well over eight years, gaining functionality while evolving from one release to the next. The principles and concepts presented in this book have been field-tested in the Nelsis CAD Framework. CAD Frameworks: Principles and Architecture is primarily intended for EDA professionals, both in industry and in academia, but is also valuable outside the domain of electronic design. Many of the principles and concepts presented are also applicable to other design-oriented application domains, such as mechanical design or computer-aided software engineering (CASE). It is thus a valuable reference for all those involved in computer-aided design.




Analog Integrated Circuit Design Automation


Book Description

This book introduces readers to a variety of tools for analog layout design automation. After discussing the placement and routing problem in electronic design automation (EDA), the authors overview a variety of automatic layout generation tools, as well as the most recent advances in analog layout-aware circuit sizing. The discussion includes different methods for automatic placement (a template-based Placer and an optimization-based Placer), a fully-automatic Router and an empirical-based Parasitic Extractor. The concepts and algorithms of all the modules are thoroughly described, enabling readers to reproduce the methodologies, improve the quality of their designs, or use them as starting point for a new tool. All the methods described are applied to practical examples for a 130nm design process, as well as placement and routing benchmark sets.