Electronic Digital System Fundamentals


Book Description




Electronic Digital System Fundamentals


Book Description

This self-study text explains the basics of digital electronics using a combination of fundamental theory, examples and practical applications. Digital devices form an integral part of numerous modern-day systems and include those used for operating electronic alarm systems, for performing arithmetic, timing and computing operations, and for logging, processing and data transfer. Well-illustrated, step-by-step procedures are provided for explaining the working of these and other digital devices. All the chapters in the text include a summary of the key points covered for the purpose of review. The recommended safety precautions, datasheets of selected digital devices, and implementation guidelines while working with digital circuits in the appendices, should be of interest to the electronics hobbyist.




Electronic Digital System Fundamentals


Book Description

Electronic Digital Systems Fundamentals, 2nd Edition is an introductory text that provides coverage of the various topics in the field of digital electronics. The key concepts presented in this book are discussed using a simplified approach that greatly enhances learning. The use of mathematics is kept to the very minimum and is discussed clearly through applications and illustrations. Each chapter is organized in a step-by-step progression of concepts and theory. The chapters begin with an introduction, discuss important concepts with the help of numerous illustrations, as well as examples, and conclude with summaries. The overall learning objectives of this book include: Describe the characteristics of a digital electronic system. Explain the operation of digital electronic gate circuits. Demonstrate how gate functions are achieved. Use binary, octal, and hexadecimal counting systems. Use Boolean algebra to define different logic operations. Change a logic diagram into a Boolean expression and a Boolean expression into a logic diagram. Explain how discrete components are utilized in the construction of digital integrated circuits. Discuss how counting, decoding, multiplexing, demultiplexing, and clocks function with logic devices. Change a truth table into a logic expression and a logic expression into a truth table. Identify some of the common functions of digital memory. Explain how arithmetic operations are achieved with digital circuitry. Describe the operation of microcontrollers.




Fundamentals of Digital Electronics


Book Description

This book presents the fundamentals of digital electronics in a focused and comprehensivemanner with many illustrations for understanding of the subject with high clarity. DigitalSignal Processing (DSP) application information is provided for many topics of the subjectto appreciate the practical significance of learning. To summarize, this book lays afoundation for students to become DSP engineers.




Digital Electronics


Book Description

The fundamentals and implementation of digital electronics are essential to understanding the design and working of consumer/industrial electronics, communications, embedded systems, computers, security and military equipment. Devices used in applications such as these are constantly decreasing in size and employing more complex technology. It is therefore essential for engineers and students to understand the fundamentals, implementation and application principles of digital electronics, devices and integrated circuits. This is so that they can use the most appropriate and effective technique to suit their technical need. This book provides practical and comprehensive coverage of digital electronics, bringing together information on fundamental theory, operational aspects and potential applications. With worked problems, examples, and review questions for each chapter, Digital Electronics includes: information on number systems, binary codes, digital arithmetic, logic gates and families, and Boolean algebra; an in-depth look at multiplexers, de-multiplexers, devices for arithmetic operations, flip-flops and related devices, counters and registers, and data conversion circuits; up-to-date coverage of recent application fields, such as programmable logic devices, microprocessors, microcontrollers, digital troubleshooting and digital instrumentation. A comprehensive, must-read book on digital electronics for senior undergraduate and graduate students of electrical, electronics and computer engineering, and a valuable reference book for professionals and researchers.




Fundamentals of Electronic Devices and Circuits


Book Description

This book focuses on conceptual frameworks that are helpful in understanding the basics of electronics – what the feedback system is, the principle of an oscillator, the operational working of an amplifier, and other relevant topics. It also provides an overview of the technologies supporting electronic systems, like OP-AMP, transistor, filter, ICs, and diodes. It consists of seven chapters, written in an easy and understandable language, and featuring relevant block diagrams, circuit diagrams, valuable and interesting solved examples, and important test questions. Further, the book includes up-to-date illustrations, exercises, and numerous worked examples to illustrate the theory and to demonstrate their use in practical designs.




Fundamentals of Electronics


Book Description

This book, Electronic Devices and Circuit Application, is the first of four books of a larger work, Fundamentals of Electronics. It is comprised of four chapters describing the basic operation of each of the four fundamental building blocks of modern electronics: operational amplifiers, semiconductor diodes, bipolar junction transistors, and field effect transistors. Attention is focused on the reader obtaining a clear understanding of each of the devices when it is operated in equilibrium. Ideas fundamental to the study of electronic circuits are also developed in the book at a basic level to lessen the possibility of misunderstandings at a higher level. The difference between linear and non-linear operation is explored through the use of a variety of circuit examples including amplifiers constructed with operational amplifiers as the fundamental component and elementary digital logic gates constructed with various transistor types. Fundamentals of Electronics has been designed primarily for use in an upper division course in electronics for electrical engineering students. Typically such a course spans a full academic years consisting of two semesters or three quarters. As such, Electronic Devices and Circuit Applications, and the following two books, Amplifiers: Analysis and Design and Active Filters and Amplifier Frequency Response, form an appropriate body of material for such a course. Secondary applications include the use in a one-semester electronics course for engineers or as a reference for practicing engineers.




Digital Fundamentals


Book Description




Fundamental of Digital Electronics And Microprocessors


Book Description

In the recent years there has been rapid advances in the field of Digital Electronics and Microprocessor.This book is intended to help students to keep pace with these latest developments.The Present book is revised version of earlier book'Introduction to Digital Computers'by the same author.Now this book is written in a lucid and simple language,which gives clear explanation of basics of Digital Electronics,Computers and icroprocessors.




Fundamentals of Electronics Book 4: (Oscillators and Advanced Electronics)


Book Description

This Book, Oscillators and Advanced Electronics Topics, is the final book of a larger, four-book set, Fundamentals of Electronics. It consists of five chapters that further develop practical electronic applications based on the fundamental principles developed in the first three books. This book begins by extending the principles of electronic feedback circuits to linear oscillator circuits. The second chapter explores non-linear oscillation, waveform generation, and waveshaping. The third chapter focuses on providing clean, reliable power for electronic applications where voltage regulation and transient suppression are the focus. Fundamentals of communication circuitry form the basis for the fourth chapter with voltage-controlled oscillators, mixers, and phase-lock loops being the primary focus. The final chapter expands upon early discussions of logic gate operation (introduced in Book 1) to explore gate speed and advanced gate topologies. Fundamentals of Electronics has been designed primarily for use in an upper division course in electronics for electrical engineering students and for working professionals. Typically such a course spans a full academic year consisting of two smesters or three quarters. As such, Oscillators and Advanced Electronic Topics, and the first three books in the series, Electronic Devices and Circuit Applications (ISBN 978-93-85909-21-4), Amplifiers: Analysis and Design (ISBN 978-93-85909-22-1), and Active Filters and Amplifier Frequency Response (ISBN 978-93-85909-23-8) form an appropriate body of material for such course.