Electronic Interfaces for Differential Capacitive Sensors


Book Description

In a world where great efforts are spent designing and creating more complex, yet efficient systems, sensing elements and related readout circuits, which constitute an integral part of them, need to be designed fulfilling these constraints, beside the common key parameters, such as high sensitivity, resolution and accuracy. Capacitive sensors and their differential subset provide virtually no energy dissipation, show insensitivity to temperature variations and have the capability to be micromachined directly onto a silicon substrate, together with the readout interface. Designing a readout circuit that takes advantage of these benefits, according to any specific application, is thus of utmost importance. This volume introduces the reader to state-of-the-art techniques and research achievements in interfacing differential capacitance sensors. Technical topics discussed in the book include:▪ Switched capacitor based interfaces;▪ Voltage mode, differential capacitance to time, voltage, digital converters;▪ Current mode interfaces based on standard components;▪ Current mode interfaces based on CCIIs and VCIIs;▪ Principles of second generation current and voltage conveyors. This book gives the reader a comprehensive overview on the working principles, equivalent circuit models and most advanced interfacing techniques for differential capacitive transducers, highlighting benefits and downsides of each option. Electronic interfaces for differential capacitive sensors is an ideal text for academic staff and Masters/research students in electronic and microelectronic engineering.




Electronic Interfaces for Differential Capacitive Sensors


Book Description

This book gives the reader a comprehensive overview on the working principles, equivalent circuit models and most advanced interfacing techniques for differential capacitive transducers, highlighting benefits and downsides of each option.




Signal Processing and Analysis of Electrical Circuit


Book Description

This Special Issue with 35 published articles shows the significance of the topic “Signal Processing and Analysis of Electrical Circuit”. This topic has been gaining increasing attention in recent times. The presented articles can be categorized into four different areas: signal processing and analysis methods of electrical circuits; electrical measurement technology; applications of signal processing of electrical equipment; fault diagnosis of electrical circuits. It is a fact that the development of electrical systems, signal processing methods, and circuits has been accelerating. Electronics applications related to electrical circuits and signal processing methods have gained noticeable attention in recent times. The methods of signal processing and electrical circuits are widely used by engineers and scientists all over the world. The constituent papers represent a significant contribution to electronics and present applications that can be used in industry. Further improvements to the presented approaches are required for realizing their full potential.




Sensors


Book Description

This book gathers the best papers presented at the Third Italian National Conference on Sensors, held in Rome, Italy, from 23 to 25 February 2016. The book represents an invaluable and up-to-the-minute tool, providing an essential overview of recent findings, strategies and new directions in the area of sensor research. Further, it addresses various aspects based on the development of new chemical, physical or biological sensors, assembling and characterization, signal treatment and data handling. Lastly, the book applies electrochemical, optical and other detection strategies to relevant issues in the food and clinical environmental areas, as well as industry-oriented applications.




Sensors and Microsystems


Book Description

This book showcases the state of the art in the field of sensors and microsystems, revealing the impressive potential of novel methodologies and technologies. It covers a broad range of aspects, including: bio-, physical and chemical sensors, actuators, micro- and nano-structured materials, mechanisms of interaction and signal transduction, polymers and biomaterials, sensor electronics and instrumentation, analytical microsystems, recognition systems and signal analysis and sensor networks as well as manufacturing technologies, environmental, food, energy and biomedical applications. The contents reflect the outcomes of the activities of AISEM (Italian Association of Sensors and Microsystems) in 2021. Co-Edited by B. Andò, F. Baldini, G. Betta, D. Compagnone, S. Conoci, E. Comini, V. Ferrari, E. La Salandra, L. Lorenzelli, A.G. Mignani, G. Marrazza, G. Neri, P. Siciliano.




Sensors and Microsystems


Book Description

This book showcases the state of the art in the field of sensors and microsystems, revealing the impressive potential of novel methodologies and technologies. It covers a broad range of aspects, including: bio-, physical and chemical sensors; actuators; micro- and nano-structured materials; mechanisms of interaction and signal transduction; polymers and biomaterials; sensor electronics and instrumentation; analytical microsystems, recognition systems and signal analysis; and sensor networks, as well as manufacturing technologies, environmental, food and biomedical applications. The book gathers a selection of papers presented at the 20th AISEM National Conference on Sensors and Microsystems, held in Naples, Italy in February 2019, the event brought together researchers, end users, technology teams and policy makers.




Smart Sensors and MEMS


Book Description

Smart Sensors and MEMS: Intelligent Devices and Microsystems for Industrial Applications, Second Edition highlights new, important developments in the field, including the latest on magnetic sensors, temperature sensors and microreaction chambers. The book outlines the industrial applications for smart sensors, covering direct interface circuits for sensors, capacitive sensors for displacement measurement in the sub-nanometer range, integrated inductive displacement sensors for harsh industrial environments, advanced silicon radiation detectors in the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) spectral range, among other topics. New sections include discussions on magnetic and temperature sensors and the industrial applications of smart micro-electro-mechanical systems (MEMS). The book is an invaluable reference for academics, materials scientists and electrical engineers working in the microelectronics, sensors and micromechanics industry. In addition, engineers looking for industrial sensing, monitoring and automation solutions will find this a comprehensive source of information. - Contains new chapters that address key applications, such as magnetic sensors, microreaction chambers and temperature sensors - Provides an in-depth information on a wide array of industrial applications for smart sensors and smart MEMS - Presents the only book to discuss both smart sensors and MEMS for industrial applications




Current-Mode Instrumentation Amplifiers


Book Description

This book describes a new way to design and utilize Instrumentation Amplifiers (IAs) by taking advantages of the current-mode (CM) approach. For the first time, all different topologies of CMIAs are discussed and compared, providing a single-source reference for instrumentation and measurement experts who want to choose a topology for a specific application. The authors also explain major challenges in designing CMIAs, so the book can be useful for anyone studying instrumentation amplifiers, and even other analog circuits. Coverage also includes various CM signal processing techniques employed in CMIAs, and applications of the CMIAs in biomedical and data acquisition are demonstrated.




Advanced Interfacing Techniques for Sensors


Book Description

This book presents ways of interfacing sensors to the digital world, and discusses the marriage between sensor systems and the IoT: the opportunities and challenges. As sensor output is often affected by noise and interference, the book presents effective schemes for recovering the data from a signal that is buried in noise. It also explores interesting applications in the area of health care, un-obstructive monitoring and the electronic nose and tongue. It is a valuable resource for engineers and scientists in the area of sensors and interfacing wanting to update their knowledge of the latest developments in the field and learn more about sensing applications and challenges.




Energy Autonomous Micro and Nano Systems


Book Description

Providing a detailed overview of the fundamentals and latest developments in the field of energy autonomous microsystems, this book delivers an in-depth study of the applications in the fields of health and usage monitoring in aeronautics, medical implants, and home automation, drawing out the main specifications on such systems. Introductory information on photovoltaic, thermal and mechanical energy harvesting, and conversion, is given, along with the latest results in these fields. This book also provides a state of the art of ultra-low power sensor interfaces, digital signal processing and wireless communications. In addition, energy optimizations at the sensor node and sensors network levels are discussed, thus completing this overview. This book details the challenges and latest techniques available to readers who are interested in this field. A major strength of this book is that the first three chapters are application orientated and thus, by setting the landscape, introduce the technical chapters. There is also a good balance between the technical application, covering all the system-related aspects and, within each chapter, details on the physics, materials and technologies associated with electronics. Contents Introduction. Introduction to Energy Autonomous Micro and Nano Systems and Presentation of Contributions, Marc Belleville and Cyril Condemine. 1. Sensors at the Core of Building Control, Gilles Chabanis, Laurent Chiesi, Hynek Raisigel, Isabelle Ressejac and Véronique Boutin. 2. Toward Energy Autonomous MedicalImplants, Raymond Campagnolo and Daniel Kroiss. 3. Energy Autonomous Systems in Aeronautic Applications, Thomas Becker, Jirka Klaue and Martin Kluge. 4. Energy Harvesting by Photovoltaic Effect, Emmanuelle Rouvière, Simon Perraud, Cyril Condemine and Guy Waltisperger. 5. Mechanical Energy Harvesting, Ghislain Despesse, Jean Jacques Chaillout, Sébastien Boisseau and Claire Jean-Mistral. 6. Thermal Energy Harvesting, Tristan Caroff, Emmanuelle Rouvière and Jérôme Willemin. 7. Lithium Micro-Batteries, Raphaël Salot. 8. Ultra-Low-Power Sensors, Pascal Nouet, Norbert Dumas, Laurent Latorre and Frédérick Mailly. 9. Ultra-Low-Power Signal Processing in Autonomous Systems, Christian Piguet. 10. Ultra-Low-Power Radio Frequency Communications and Protocols, Eric Mercier. 11. Energy Management in an Autonomous Microsystem, Jean-Frédéric Christmann, Edith Beigne, Cyril Condemine, Jérôme Willemin and Christian Piguet. 12. Optimizing Energy Efficiency of Sensor Networks, Olivier Sentieys and Olivier Berder.