Electronic Noses and Sensors for the Detection of Explosives


Book Description

Proceedings of the NATO Advanced Research Workshop, held in Warwick, Coventry, U.K., 30 September-3 October 2003




Explosives Detection


Book Description

This volume presents selected contributions from the “Advanced Research Workshop on Explosives Detection” hosted by the Department of Information Engineering of the University of Florence, Italy in 2018. The main goal of the workshop was to find out how Science for Peace and Security projects in the field of Explosives Detection contribute to the development and/or refinement of scientific and technical knowledge and competencies. The findings of the workshop, presented in the last section of the book, determine future actions and direction of the SPS Programme in the field of explosives detection and management.The NATO Science for Peace and Security (SPS) Programme, promotes dialogue and practical cooperation between NATO member states and partner nations based on scientific research, technological innovation and knowledge exchange. Several initiatives were launched in the field of explosive detection and clearance, as part of NATO’s enhanced role in the international fight against terrorism. Experts and scientists from NATO members and partner countries have been brought together in multi-year projects, within the framework of the SPS Programme, to cooperate in the scientific research in explosive detection field, developing new technologies and methods to be implemented in order to detect explosive substances in different contexts.




Nanotechnology-Based E-Noses


Book Description

Nanotechnology-based E-Noses reviews advances in nanomaterials and their modification for use in e-sensors. "E-noses" or "electronic sensors" are emerging as advanced technologies for the fast detection of chemicals, gases, and explosives. The concept behind the "e-nose" is similar to the capability of humans and dogs in detecting materials based on odors. Nanomaterials can be used for e-nose technologies but their properties must be modified to make them effective sensors. The sensing capability and performance of these materials depend on several factors, such as morphology, dopants, microadditives, design of sensors, phase, and structure of the nanomaterials. Theoretical understanding of nanomaterials and technologies for improving sensors with better detection limits are covered. The most relevant nanomaterials, their synthesis strategies, and the relationship between properties and device performance are provided. Current state-of-the-art progress in nanotechnology device fabrication along with directions for future applications and challenges are discussed. - Covers fundamentals of nanomaterials for electronic sensing applications, including material synthesis and property optimization strategies to improve material performance - Reviews emerging relevant nanomaterials including 1D, 2D and 3D nanomaterials for use in e-nose technologies - Discusses nanotechnology-based e-noses and their wide range of applications in the detection of chemicals, gases, explosives, and more




Trace Chemical Sensing of Explosives


Book Description

This timely book covers the most recent developments in the chemical detection of explosives in a variety of environments. Beginning with a broad view of the need for and the potential applications of chemical sensing, the book considers the issue of how to effectively include chemical sensing into systems designed to find hidden explosives devices. Offering a firsthand look at the latest technologies direct from those who are actively developing them, the book features: A look at the history of the field, including the contributions of recent programs A brief explanation of the chemistry of various explosives and differences in the place where they may be detected An introduction to the problems presented by trace element sensing An overview and comparison of the technologies currently being used and developed Case studies of field experiences with chemical sensors A look at the emerging threat of non-traditional explosives This book is an important reference for explosives engineers, systems engineers involved in the development of related devices, government agencies and NGOs involved in demining efforts, military and law enforcement specialists in mines and explosive ordinance disposal (EOD), as well as environmental scientists and chemists involved in explosives research. In addition to providing field workers with knowledge that will help them decide where and how to search for explosives using chemical sensors. It will provide them with an understanding of the potential and the limitations of chemical sensing in their search for and identification of dangerous devices.




Existing and Potential Standoff Explosives Detection Techniques


Book Description

Existing and Potential Standoff Explosives Detection Techniques examines the scientific techniques currently used as the basis for explosives detection and determines whether other techniques might provide promising research avenues with possible pathways to new detection protocols. This report describe the characteristics of explosives, bombs, and their components that are or might be used to provide a signature for exploitation in detection technology; considers scientific techniques for exploiting these characteristics to detect explosives and explosive devices; discusses the potential for integrating such techniques into detection systems that would have sufficient sensitivity without an unacceptable false-positive rate; and proposes areas for research that might be expected to yield significant advances in practical explosives and bomb detection technology in the near, mid, and long term.




Electronic Noses


Book Description

This book aims to discuss the basic principles of an electronic nose, and to provide an account of recent developments in this field, with practical examples of its application. It seeks to review the field together with the many new developments that have occurred since the first meeting was held on electronic noses in Iceland in 1991. It will be essential reading for anyone who is working, researching or simply interested in electronic noses or machine olfaction. A comprehensive appendix is provided at the end of the book.




Technology in Forensic Science


Book Description

The book "Technology in Forensic Science" provides an integrated approach by reviewing the usage of modern forensic tools as well as the methods for interpretation of the results. Starting with best practices on sample taking, the book then reviews analytical methods such as high-resolution microscopy and chromatography, biometric approaches, and advanced sensor technology as well as emerging technologies such as nanotechnology and taggant technology. It concludes with an outlook to emerging methods such as AI-based approaches to forensic investigations.




Vapour and Trace Detection of Explosives for Anti-Terrorism Purposes


Book Description

The fast detection of explosives from the vapor phase would be one way to enhance the protection of society against terrorist attacks. Up to now the problem of detection of explosives, especially the location of explosives whether at large areas e. g. station halls, theaters or hidden in cars, aircraft cargo, baggage or explosives hidden in crowds e. g. suicide bombers or bombs in bags has not been solved. Smelling of explosives like dogs do seems to be a valuable tool for a security chain. In general different strategies can be adopt to the basic problem of explosive detection: • bulk detection • vapor detection Normally meetings cover both aspects and applications of the detection. Even though both methods might fulfill special aspects of a general security chain the underlying scientific questions differ strongly. Because of that the discussions of the scientists and practitioners from the different main directions are sometimes only less specific. Therefore the NATO Advisory Panel in Security-Related Civil Science and Technology proposed a small series of NATO ARW's which focuses on the different scientific aspects of explosives detection methods. This book is based on material presented at the first NATO ARW of this series in Moscow which covered the topic: Vapor and trace detection of explosives. The second ARW was held in St. Petersburg and treated the topic Bulk detection methods. The third workshop was held in Warwick and focused on electronic noses which cover a somewhat different aspect of vapor detection.