Power Electronic Packaging


Book Description

Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can drive continued advancements, particularly in thermal management, usability, efficiency, reliability and overall cost of power semiconductor solutions.




Electronic Packaging Materials and Their Properties


Book Description

Packaging materials strongly affect the effectiveness of an electronic packaging system regarding reliability, design, and cost. In electronic systems, packaging materials may serve as electrical conductors or insulators, create structure and form, provide thermal paths, and protect the circuits from environmental factors, such as moisture, contamination, hostile chemicals, and radiation. Electronic Packaging Materials and Their Properties examines the array of packaging architecture, outlining the classification of materials and their use for various tasks requiring performance over time. Applications discussed include: interconnections printed circuit boards substrates encapsulants dielectrics die attach materials electrical contacts thermal materials solders Electronic Packaging Materials and Their Properties also reviews key electrical, thermal, thermomechanical, mechanical, chemical, and miscellaneous properties as well as their significance in electronic packaging.




Essentials of Electronic Packaging


Book Description

ASME Press Book Series on Electronic Packaging. Series Editor: Dereje Agonafer. This book provides the basic essentials and fundamentals of electronic packaging technology. It introduces the language and terminology, as well as the basic building blocks of information processing technology such as: a) printed wiring boards and laminates, b) various types of components and packages, c) materials and processes, d) fundamentals of reliability and relevant reliability enhancement methods, and e) typical failures observed are described. A fully tested semiconductor device is the starting point for this text. Thus, no background in the semiconductor design or fabrication is assumed. The reader is exposed to the interaction and convergence of various disciplines such as chemistry, physics, materials science, metallurgy, process engineering in the fabrication of an electronic appliance. The reader is also made aware of the emerging trends in electronic packaging to prepare him or her for the near-term miniaturization and integration of technology trends.




Modeling, Analysis, Design, and Tests for Electronics Packaging beyond Moore


Book Description

Modeling, Analysis, Design and Testing for Electronics Packaging Beyond Moore provides an overview of electrical, thermal and thermomechanical modeling, analysis, design and testing for 2.5D/3D. The book addresses important topics, including electrically and thermally induced issues, such as EMI and thermal issues, which are crucial to package signal and thermal integrity. It also covers modeling methods to address thermomechanical stress related to the package structural integrity. In addition, practical design and test techniques for packages and systems are included. - Includes advanced modeling and analysis methods and techniques for state-of-the art electronics packaging - Features experimental characterization and qualifications for the analysis and verification of electronic packaging design - Provides multiphysics modeling and analysis techniques of electronic packaging




Advanced Materials for Thermal Management of Electronic Packaging


Book Description

The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry’s ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility with the die and electronic packaging. In response to critical needs, there have been revolutionary advances in thermal management materials and technologies for active and passive cooling that promise integrable and cost-effective thermal management solutions. This book meets the need for a comprehensive approach to advanced thermal management in electronic packaging, with coverage of the fundamentals of heat transfer, component design guidelines, materials selection and assessment, air, liquid, and thermoelectric cooling, characterization techniques and methodology, processing and manufacturing technology, balance between cost and performance, and application niches. The final chapter presents a roadmap and future perspective on developments in advanced thermal management materials for electronic packaging.




Handbook of Electronic Package Design


Book Description

Both a handbook for practitioners and a text for use in teaching electronic packaging concepts, guidelines, and techniques. The treatment begins with an overview of the electronics design process and proceeds to examine the levels of electronic packaging and the fundamental issues in the development




Thermal and Structural Electronic Packaging Analysis for Space and Extreme Environments


Book Description

Have you ever wondered how NASA designs, builds, and tests spacecrafts and hardware for space? How is it that wildly successful programs such as the Mars Exploration Rovers could produce a rover that lasted over ten times the expected prime mission duration? Or build a spacecraft designed to visit two orbiting destinations and last over 10 years when the fuel ran out? This book was written by NASA/JPL engineers with experience across multiple projects, including the Mars rovers, Mars helicopter, and Dawn ion propulsion spacecraft in addition to many more missions and technology demonstration programs. It provides useful and practical approaches to solving the most complex thermal-structural problems ever attempted for design spacecraft to survive the severe cold of deep space, as well as the unforgiving temperature swings on the surface of Mars. This is done without losing sight of the fundamental and classical theories of thermodynamics and structural mechanics that paved the way to more pragmatic and applied methods such finite element analysis and Monte Carlo ray tracing, for example. Features: Includes case studies from NASA’s Jet Propulsion Laboratory, which prides itself in robotic exploration of the solar system, as well as flyting the first cubeSAT to Mars. Enables spacecraft designer engineers to create a design that is structurally and thermally sound, and reliable, in the quickest time afforded. Examines innovative low-cost thermal and power systems. Explains how to design to survive rocket launch, the surfaces of Mars and Venus. Suitable for practicing professionals as well as upper-level students in the areas of aerospace, mechanical, thermal, electrical, and systems engineering, Thermal and Structural Electronic Packaging Analysis for Space and Extreme Environments provides cutting-edge information on how to design, and analyze, and test in the fast-paced and low-cost small satellite environment and learn techniques to reduce the design and test cycles without compromising reliability. It serves both as a reference and a training manual for designing satellites to withstand the structural and thermal challenges of extreme environments in outer space.




Mechanical Analysis of Electronic Packaging Systems


Book Description

"Fills the niche between purely technical engineering texts and sophisticated engineering software guides-providing a pragmatic, common sense approach to analyzing and remedying electronic packaging configuration problems. Combines classical engineering techniques with modern computing to achieve optimum results in assessment cost and accuracy."




Electronic Packaging and Interconnection Handbook


Book Description

Charles A. Harper's 2nd edition on designing and manufacturing all the major types of electronic systems is now double the size of the 1st edition. It draws upon the expertise of a dozen experts to make sense of this highly interdisciplinary field




Microwave and Millimeter-Wave Electronic Packaging


Book Description

Packaging of electronic components at microwave and millimeter-wave frequencies requires the same level of engineering effort for lower frequency electronics plus a set of additional activities which are unique due to the higher frequency of operation. This resource presents you with the electronic packaging issues unique to microwave and millimeter-wave frequencies and reviews lower frequency packaging techniques so they can be adapted to higher frequency designs. You are provided with 30 practical examples throughout the book, as well as three free downloadable software analysis programs.