Electronic States and Optical Transitions in Semiconductor Heterostructures


Book Description

The theoretical basis and the relevant experimental knowledge underlying our present understanding of the electrical and optical properties of semiconductor heterostructures. Although such structures have been known since the 1940s, it was only in the 1980s that they moved to the forefront of research. The resulting structures have remarkable properties not shared by bulk materials. The text begins with a description of the electronic properties of various types of heterostructures, including discussions of complex band-structure effects, localised states, tunnelling phenomena, and excitonic states. The focus of the remainder of the book is on optical properties, including intraband absorption, luminescence and recombination, Raman scattering, subband optical transitions, nonlinear effects, and ultrafast optical phenomena. The concluding chapter presents an overview of some of the applications that make use of the physics discussed. Appendices provide background information on band structure theory, kinetic theory, electromagnetic modes, and Coulomb effects.




Fundamentals of Solid State Engineering


Book Description

Fundamentals of Solid State Engineering is structured in two major parts. It first addresses the basic physics concepts, which are at the base of solid state matter in general and semiconductors in particular. The second part reviews the technology for modern Solid State Engineering. This includes a review of compound semiconductor bulk and epitaxial thin films growth techniques, followed by a description of current semiconductor device processing and nano-fabrication technologies. A few examples of semiconductor devices and a description of their theory of operational are then discussed, including transistors, semiconductor lasers, and photodetectors.




Fundamentals of Solid State Engineering


Book Description

"Fundamentals of Solid State Engineering, 2nd Edition, provides a multi-disciplinary introduction to solid state engineering, combining concepts from physics, chemistry, electrical engineering, materials science and mechanical engineering. Revised throughout, this third edition includes new topics such as electron-electron and electron-phonon interactions, in addition to the Kane effective mass method. A chapter devoted to quantum mechanics has been expanded to cover topics such as the harmonic oscillator, the hydrogen atom, the quantum mechanical description of angular momentum and the origin of spin. This textbook also features an improved transport theory description, which now goes beyond Drude theory, discussing the Boltzmann approach. Introducing students to the rigorous quantum mechanical way of thinking about and formulating transport processes, this textbook presents the basic physics concepts and thorough treatment of semiconductor characterization technology, designed for solid state engineers."--Publisher's website.




Colloidal Quantum Dot Optoelectronics and Photovoltaics


Book Description

Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.




Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors


Book Description

Three-volumes book “Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors” is the first to cover both chemical sensors and biosensors and all types of photodetectors and radiation detectors based on II-VI semiconductors. It contains a comprehensive and detailed analysis of all aspects of the application of II-VI semiconductors in these devices. The first volume "Materials and Technologies" of a three-volume set describes the physical, chemical and electronic properties of II-VI compounds, which give rise to an increased interest in these semiconductors. Technologies that are used in the development of various devices based on II-VI connections, such as material synthesis, deposition, characterization, processing, and device fabrication, are also discussed in detail in this volume. It covers also topics related to synthesis and application of II-VI-based nanoparticles and quantum dots, as well their toxicity, biocompatibility and biofunctionalization.




Processing and Properties of Compound Semiconductors


Book Description

Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.




Quantum Kinetics in Transport and Optics of Semiconductors


Book Description

The state-of-the-art of quantum transport and quantum kinetics in semiconductors, plus the latest applications, are covered in this monograph. Since the publishing of the first edition in 1996, the nonequilibrium Green function technique has been applied to a large number of new research topics, and the revised edition introduces the reader to many of these areas. This book is both a reference work for researchers and a self-tutorial for graduate students.




Nanoscale Quantum Materials


Book Description

In the past four decades, there has been growing interest in the exciting new topic of physics in low dimensions. Thousands of original ideas have been proposed in the literature, and some are confirmed experimentally, along with several Nobel prizes which have been awarded in this field. While there are several books available, almost all are technical and accessible only to expert researchers. This book provides an accessible introduction to the field, with less emphasis on technical details. Whilst this book does not provide a traditional history of nano-science, instead it uses simple explanations and case studies as vehicles to explain key discoveries and the importance of them, enabling readers without a background in the area to gain an understanding of some aspects of nanoscale physics. It will be of interest to researchers working in condensed matter physics, in addition to engineers and advanced students in those disciplines. It also remains accessible to ‘physics enthusiasts’ from other academic disciplines, as technical details are contained within boxes and footnotes which can be skipped for a general reading of the book. Features: - Provides an accessible introduction to a technical subject - Contains exciting developments from the cutting-edge science being conducted in the area - Authored by a recognised expert in the field




Introduction to the Physics of Diluted Magnetic Semiconductors


Book Description

As materials whose semiconducting properties are influenced by magnetic ions, DMSs are central to the emerging field of spintronics. This volume focuses both on basic physical mechanisms (e.g. carrier-ion and ion-ion interactions), and resulting phenomena.




Solid-State Physics


Book Description

While the standard solid state topics are covered, the basic ones often have more detailed derivations than is customary (with an empasis on crystalline solids). Several recent topics are introduced, as are some subjects normally included only in condensed matter physics. Lattice vibrations, electrons, interactions, and spin effects (mostly in magnetism) are discussed the most comprehensively. Many problems are included whose level is from "fill in the steps" to long and challenging, and the text is equipped with references and several comments about experiments with figures and tables.