Electronic Structure Calculations on Graphics Processing Units


Book Description

Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics provides an overview of computing on graphics processing units (GPUs), a brief introduction to GPU programming, and the latest examples of code developments and applications for the most widely used electronic structure methods. The book covers all commonly used basis sets including localized Gaussian and Slater type basis functions, plane waves, wavelets and real-space grid-based approaches. The chapters expose details on the calculation of two-electron integrals, exchange-correlation quadrature, Fock matrix formation, solution of the self-consistent field equations, calculation of nuclear gradients to obtain forces, and methods to treat excited states within DFT. Other chapters focus on semiempirical and correlated wave function methods including density fitted second order Møller-Plesset perturbation theory and both iterative and perturbative single- and multireference coupled cluster methods. Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics presents an accessible overview of the field for graduate students and senior researchers of theoretical and computational chemistry, condensed matter physics and materials science, as well as software developers looking for an entry point into the realm of GPU and hybrid GPU/CPU programming for electronic structure calculations.




Applied Parallel and Scientific Computing


Book Description

This volume constitutes the refereed proceedings of the 11th International Conference on Applied Parallel and Scientific Computing, PARA 2012, held in Helsinki, Finland, in June 2012. The 35 revised full papers presented were selected from numerous submissions and are organized in five technical sessions covering the topics of advances in HPC applications, parallel algorithms, performance analyses and optimization, application of parallel computing in industry and engineering, and HPC interval methods. In addition, three of the topical minisymposia are described by a corresponding overview article on the minisymposia topic. In order to cover the state-of-the-art of the field, at the end of the book a set of abstracts describe some of the conference talks not elaborated into full articles.







GPU Gems 2


Book Description

More useful techniques, tips, and tricks for harnessing the power of the new generation of powerful GPUs.




Numerical Computations with GPUs


Book Description

This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to reusable, adaptable and scalable code fragments. This book also serves as a GPU implementation manual for many numerical algorithms, sharing tips on GPUs that can increase application efficiency. The valuable insights into parallelization strategies for GPUs are supplemented by ready-to-use code fragments. Numerical Computations with GPUs targets professionals and researchers working in high performance computing and GPU programming. Advanced-level students focused on computer science and mathematics will also find this book useful as secondary text book or reference.




High Performance Computing - HiPC 2007


Book Description

This book constitutes the refereed proceedings of the 14th International Conference on High-Performance Computing, HiPC 2007, held in Goa, India, in December 2007. The 53 revised full papers presented together with the abstracts of five keynote talks were carefully reviewed and selected from 253 submissions. The papers are organized in topical sections on a broad range of applications including I/O and FPGAs, and microarchitecture and multiprocessor architecture.




Electronic Structure


Book Description

An important graduate textbook in condensed matter physics by highly regarded physicist.




Parallel Computer Architecture


Book Description

This book outlines a set of issues that are critical to all of parallel architecture--communication latency, communication bandwidth, and coordination of cooperative work (across modern designs). It describes the set of techniques available in hardware and in software to address each issues and explore how the various techniques interact.




Programming Massively Parallel Processors


Book Description

Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing