Electronic Structure Methods for Complex Materials


Book Description

This book details the application of the OLCAO method for calculating the properties of solids from fundamental principles to a wide array of material systems. The method specializes in large and complex models and is able to compute a variety of useful properties including electronic, optical, and spectroscopic properties.




Electronic Structure of Materials


Book Description

This book is a short survey of magnetochemistry as a promising method for revealing the electronic structure of inorganic substances, particularly solid oxide materials. It is supported by five chapters that describe materials with various structures and applications, showing how the method of magnetic dilution with the aid of other physical methods (electron spin resonance, magnetization, Raman and Mössbauer spectroscopy, and electrical conductivity), accompanied by thorough structural and quantum mechanical studies, may be used for describing the states of atoms and interatomic interactions in multicomponent oxide systems. The book will serve as a guide for researchers in the field of various oxide materials, since it shows the roots for selecting the best structures and qualitative and quantitative compositions of oxide materials on the basis of the knowledge about their electronic structure. It is devoted to some of the most popular structures of multicomponent oxides among modern materials—perovskites and pyrochlores—giving a unified approach to their chemical structure.




The Electronic Structure of Complex Systems


Book Description

We present here the transcripts of lectures and talks which were delivered at the NATO ADVANCED STUDY INSTITUTE "Electronic Structure of Complex Systems" held at the State University of Ghent, Belgium during the period July 12-23, 1982. The aim of these lectures was to highlight some of the current progress in our understanding of the electronic structure of com plex systems. A massive leap forward is obtained in bandstructure calculations with the advent of linear methods. The bandtheory also profitted tremendously from the recent developments in the density functional theories for the properties of the interacting electron gas in the presence of an external field of ions. The means of per forming fast bandstructure calculations and the confidence in the underlying potential functions have led in the past five years or so to a wealth of investigations into the electronic properties of elemental solids and compounds. The study of the trends of the electronic structure through families of materials provided invalu able insights for the prediction of new materials. The detailed study of the electronic structure of specific solids was not neglected and our present knowledge of d- and f-metals and metal hydrides was reviewed. For those systems we also investi gated the accuracy of the one electron potentials in fine detail and we complemented this with the study of small clusters of atoms where our calculations are amenable to comparison with the frontiers of quantum chemistry calculations.




Semiempirical Methods of Electronic Structure Calculation


Book Description

If one reflects upon the range of chemical problems accessible to the current quantum theoretical methods for calculations on the electronic structure of molecules, one is immediately struck by the rather narrow limits imposed by economic and numerical feasibility. Most of the systems with which experimental photochemists actually work are beyond the grasp of ab initio methods due to the presence of a few reasonably large aromatic ring systems. Potential energy surfaces for all but the smallest molecules are extremely expensive to produce, even over a restricted group of the possible degrees of freedom, and molecules containing the higher elements of the periodic table remain virtually untouched due to the large numbers of electrons involved. Almost the entire class of molecules of real biological interest is simply out of the question. In general, the theoretician is reduced to model systems of variable appositeness in most of these fields. The fundamental problem, from a basic computational point of view, is that large molecules require large numbers of basis functions, whether Slater type orbitals or Gaussian functions suitably contracted, to provide even a modestly accurate description of the molecular electronic environment. This leads to the necessity of dealing with very large matrices and numbers of integrals within the Hartree-Fock approximation and quickly becomes both numerically difficult and uneconomic.




Methods of Electronic Structure Theory


Book Description

These two volumes deal with the quantum theory of the electronic structure of molecules. Implicit in the term ab initio is the notion that approximate solutions of Schrödinger's equation are sought "from the beginning," i. e. , without recourse to experimental data. From a more pragmatic viewpoint, the distin guishing feature of ab initio theory is usually the fact that no approximations are involved in the evaluation of the required molecular integrals. Consistent with current activity in the field, the first of these two volumes contains chapters dealing with methods per se, while the second concerns the application of these methods to problems of chemical interest. In asense, the motivation for these volumes has been the spectacular recent success of ab initio theory in resolving important chemical questions. However, these applications have only become possible through the less visible but equally important efforts of those develop ing new theoretical and computational methods and models. Henry F Schaefer Vll Contents Contents of Volume 4 XIX Chapter 1. Gaussian Basis Sets for Molecular Calculations Thom. H. Dunning, Ir. and P. Ieffrey Hay 1. Introduction . . . . . . . . . . . . . . . . 1 1. 1. Slater Functions and the Hydrogen Moleeule 1 1. 2. Gaussian Functions and the Hydrogen Atom 3 2. Hartree-Fock Calculations on the First Row Atoms 5 2. 1. Valence States of the First Row Atoms 6 7 2. 2. Rydberg States of the First Row Atoms 9 2. 3.




Electronic Structure


Book Description

The study of electronic structure of materials is at a momentous stage, with new computational methods and advances in basic theory. Many properties of materials can be determined from the fundamental equations, and electronic structure theory is now an integral part of research in physics, chemistry, materials science and other fields. This book provides a unified exposition of the theory and methods, with emphasis on understanding each essential component. New in the second edition are recent advances in density functional theory, an introduction to Berry phases and topological insulators explained in terms of elementary band theory, and many new examples of applications. Graduate students and research scientists will find careful explanations with references to original papers, pertinent reviews, and accessible books. Each chapter includes a short list of the most relevant works and exercises that reveal salient points and challenge the reader.




Electronic Structure Crystallography and Functional Motifs of Materials


Book Description

Electronic Structure Crystallography and Functional Motifs of Materials Detailed resource on the method of electronic structure crystallography for revealing the experimental electronic structure and structure-property relationships of functional materials Electronic Structure Crystallography and Functional Motifs of Materials describes electronic structure crystallography and functional motifs of materials, two of the most challenging topics to realize the rational design of high-performance functional materials, emphasizing the physical properties and structure-property relationships of functional materials using nonlinear optical materials as examples. The text clearly illustrates how to extract experimental electronic structure information and relevant physicochemical properties of materials based on the theories and methods in X-ray crystallography and quantum chemistry. Practical skills of charge density studies using experimental X-ray sources are also covered, which are particularly important for the future popularization and development of electron structure crystallography. This book also introduces the related theories and refinement techniques involved in using scattering methods (mainly X-ray single-crystal diffraction, as well as polarized neutron scattering and Compton scattering) to determine experimental electronic structures, including the experimental electron density, experimental electron wavefunction, and experimental electron density matrix of crystalline materials. Electronic Structure Crystallography and Functional Motifs of Materials includes information on: Basic framework and assumptions of the first-principle calculations, density matrix and density function, and Hartree-Fock (HF) and Kohn-Sham (KS) methods Analysis of topological atoms in molecules, chemical interaction analysis, coarse graining and energy partition of the density matrix, and restricted space partition Principles of electronic structure measurement, including thermal vibration analysis, scattering experiments, and refinement algorithm for experimental electronic structure Independent atom model, multipole model, X-ray constrained wavefunction model, and other electron density models Electronic Structure Crystallography and Functional Motifs of Materials is an ideal textbook or reference book for graduate students and researchers in chemistry, physics, and material sciences for studying the structures and properties of functional crystalline materials.




Elementary Electronic Structure


Book Description

This is a revised edition of the 1999 text on the electronic structure and properties of solids, similar in spirit to the well-known 1980 text Electronic Structure and the Properties of Solids. Current revisions include an added chapter on glasses, and rewritten sections on spin-orbit coupling, magnetic alloys, and the actinides. The text covers covalent semiconductors, ionic insulators, simple metals, and transition-metal and f-shell-metal systems. It focuses on the most important aspects of each system, making what approximations are necessary in order to proceed analytically and obtain formulae for the properties. Such back-of-the-envelope formulae, which display the dependence of any property on the parameters of the system, are characteristic of Harrison's approach to electronic structure, as is his simple presentation and his providing all of the needed parameters.In spite of the diversity of systems and materials, the approach is systematic and coherent, combining the tight-binding (or atomic) picture with the pseudopotential (or free-electron) picture. This provides parameters — the empty-core radii as well as the covalent energies — and conceptual bases for estimating the various properties of all of these systems. Extensive tables of parameters and properties are included.The book is written as a text, with problems at the end of each chapter, and others can readily be generated by asking for estimates of different properties, or different materials, than treated in the text. In fact, the ease of generating interesting problems reflects on the extraordinary utility and simplicity of the methods introduced. Developments since the 1980 publication have made the theory simpler than before, much more accurate, and allowed much wider application.







Electronic Structure


Book Description

An authoritative text in condensed matter physics, unifying theory and methods to present electronic structure to students and researchers.