Algebraic and Diagrammatic Methods in Many-Fermion Theory


Book Description

This text on the use of electron correlation effects in the description of the electronic structure of atoms, molecules, and crystals is intended for graduate students in physical chemistry and physics. Modern theories of electronic structure and methods of incorporating electron correlation contributions are developed using a diagrammatic and algebraic formulation, and the methods developed in the text are illustrated with examples from molecular and solid state quantum mechanics. A brief Introduction is followed by chapters on operator algebra, the independent-particle model, occupation-number formalism, and diagrams. Additional topics include the configuration-interaction method, the many-body perturbation theory, and the coupled-cluster method.




Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems


Book Description

Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems, Volume 76, the latest release in the Advances in Quantum Chemistry series presents work and reviews of current work in quantum chemistry (molecules), but also includes scattering from atoms and solid state work of interest in physics. Topics covered in this release include the Present Status of Selected Configuration Interaction with Truncation Energy Error, Recent Developments in Asymptotic Expansions from Numerical Analysis and Approximation Theory, The kinetic energy Pauli enhancement factor and its role in determining the shell structure of atoms and molecules, Numerical Hartree-Fock and Many-Body Calculations for Diatomic Molecules, and more. - Provides reports on current work in molecular and atomic quantum mechanics - Contains work reported by many of the best scientists in the field - Presents the latest release in the Advances in Quantum Chemistry series




Reviews in Computational Chemistry


Book Description

THIS VOLUME, WHICH IS DESIGNED FOR STAND-ALONE USE IN TEACHING AND RESEARCH, FOCUSES ON QUANTUM CHEMISTRY, AN AREA OF SCIENCE THAT MANY CONSIDER TO BE THE CENTRAL CORE OF COMPUTATIONAL CHEMISTRY. TUTORIALS AND REVIEWS COVER * HOW TO OBTAIN SIMPLE CHEMICAL INSIGHT AND CONCEPTS FROM DENSITY FUNCTIONAL THEORY CALCULATIONS, * HOW TO MODEL PHOTOCHEMICAL REACTIONS AND EXCITED STATES, AND * HOW TO COMPUTE ENTHALPIES OF FORMATION OF MOLECULES. * A FOURTH CHAPTER TRACES CANADIAN RESEARCH IN THE EVOLUTION OF COMPUTATIONAL CHEMISTRY. * ALSO INCLUDED WITH THIS VOLUME IS A SPECIAL TRIBUTE TO QCPE. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry proves itself an invaluable resource to the computational chemist. This series has a place in every computational chemist's library."-JOURNAL OF THE AMERICAN CHEMICAL SOCIETY




Many-Body Methods in Chemistry and Physics


Book Description

This book describes the mathematical and diagrammatic techniques employed in the popular many-body methods to determine molecular structure, properties and interactions.




Concepts of Mathematical Physics in Chemistry: A Tribute to Frank E. Harris - Part B


Book Description

Concepts of Mathematical Physics in Chemistry: A Tribute to Frank E. Harris - Part B, presents a series of articles concerning important topics in quantum chemistry, including surveys of current topics in this rapidly-developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. - Presents surveys of current topics in this rapidly-developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology - Features detailed reviews written by leading international researchers




Chemical Modelling


Book Description

Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.




Computational Chemistry


Book Description

They include an overview of development and applications of parallel and order-N Density Functional Theory (DFT) methods and the development of new methods for calculation of electron dynamical correlation for large molecular systems. For small and medium-sized molecules, chemical accuracy of quantum chemical predictions has already been achieved in many fields of application. Among the most accurate methods are Coupled Cluster (CC) approaches, but their accuracy comes at a price - such methodologies are among the most computationally demanding. Two chapters review approximate strategies developed to include triple excitations within the coupled cluster and the performance of the explicitly correlated CC method based on the so-called R12 ansatz. The Quantum Molecular Dynamics (QMD) approach has revolutionized electronic structure calculations for molecular reactions.




Advances in Quantum Chemistry: Lowdin Volume


Book Description

Advances in Quantum Chemistry: Lowdin Volume presents a series of articles exploring aspects of the application of quantum mechanics to atoms, molecules, and solids. - Celebrates Per-Olov Lowdin, who would have been 100 in 2016 - Contains papers by many who use his ideas in theoretical chemistry and physics today




Comprehensive Chiroptical Spectroscopy, Volume 1


Book Description

This book provides an introduction to the important methods of chiroptical spectroscopy in general, and circular dichroism (CD) in particular, which are increasingly important in all areas of chemistry, biochemistry, and structural biology. The book can be used as a text for undergraduate and graduate students and as a reference for researchers in academia and industry, with or without the companion volume in this set. Experimental methods and instrumentation are described with topics ranging from the most widely used methods (electronic and vibrational CD) to frontier areas such as nonlinear spectroscopy and photoelectron CD, as well as the theory of chiroptical methods and techniques for simulating chiroptical properties. Each chapter is written by one or more leading authorities with extensive experience in the field.




Correlation and Localization


Book Description

Development in science depends on several factors. Among these, the role of individual scientists is perhaps not the most important one. Science is typically a body of collective knowledge and any increase in the amount of this knowledge is certainly due to strong interaction among scientists. Even in the past, it happened quite rarely that a single person, without any aid of others, d- covered something fundamental or opened a new chapter in science. Great figures of science history have, in most cases, had rather a summarizing and s- thesizing role. This is especially valid over the last few decades. On one hand, the amount of information necessary to achieve new discoveries, has increased tremendously. On the other hand, improvement of technical facilities has increased the speed of information exchange. These factors resulted in a degree of specialization in science that had never seen before. Most of us are experts and specialists rather than scientists in the classical sense. My personal feeling is that, even nowadays, there is a strong need for professionals with a broad knowledge and c- prehensive mind, although they may not be competitive in the number of their publications or the sizes of their grants. Every time I have met such a person (I can count these cases on my fingers) I have become deeply influenced by his or her strong intellect.