Electrons in Disordered Metals and at Metallic Surfaces


Book Description

We present here the transcripts of lectures and talks which were delivered at the NATO ADVANCED STUDY INSTITUTE "Electrons in Disordered Hetals and at ~~etallic Surfaces" held at the State University of Ghent, Belgium between August 28 and September 9, 1978. The aim of these lectures was to highlight some of the current progress in our understanding of the degenerate electron 'liquid' in an external field which is neither uniform nor periodic. This theme brought together such topics as the electronic structure at metallic surfaces and in random metallic alloys, liquid metals and metallic glasses. As is the case in connection with infinite order ed crystals, the central issues to be discussed were the nature of the electronic spectra, the stability of the various phases and the occurrence of such phenomena as magnetism and supercon ductivity. In the theoretical lectures the emphasis was on detailed rea listic calculations based, more or less, on the density functional approach to the problem of the inhomogeneous electron liquid. How ever, where such calculations were not available, as in the case of magnetism in random alloys and that of metallic glasses, sim pler phenomenological models were used. The theoretical discussions were balanced by reviews of the most promising experimental techniques. Here the stress was on results and their relevance to the fundamental theory. lforeover, the attention had centered on those experiments which probe the electronic structure in the greatest detail.







Electrons in Disordered Metals and at Metallic Surfaces


Book Description

We present here the transcripts of lectures and talks which were delivered at the NATO ADVANCED STUDY INSTITUTE "Electrons in Disordered Hetals and at ~~etallic Surfaces" held at the State University of Ghent, Belgium between August 28 and September 9, 1978. The aim of these lectures was to highlight some of the current progress in our understanding of the degenerate electron 'liquid' in an external field which is neither uniform nor periodic. This theme brought together such topics as the electronic structure at metallic surfaces and in random metallic alloys, liquid metals and metallic glasses. As is the case in connection with infinite order ed crystals, the central issues to be discussed were the nature of the electronic spectra, the stability of the various phases and the occurrence of such phenomena as magnetism and supercon ductivity. In the theoretical lectures the emphasis was on detailed rea listic calculations based, more or less, on the density functional approach to the problem of the inhomogeneous electron liquid. How ever, where such calculations were not available, as in the case of magnetism in random alloys and that of metallic glasses, sim pler phenomenological models were used. The theoretical discussions were balanced by reviews of the most promising experimental techniques. Here the stress was on results and their relevance to the fundamental theory. lforeover, the attention had centered on those experiments which probe the electronic structure in the greatest detail.




Lectures On Methods Of Electronic Structure Calculations - Proceedings Of The Miniworkshop On "Methods Of Electronic Structure Calculations" And Working Group On "Disordered Alloys"


Book Description

Developments in the density functional theory and the methods of electronic structure calculations have made it possible to carry out ab-initio studies of a variety of materials efficiently and at a predictable level. This book covers many of those state-of-the-art developments and their applications to ordered and disordered materials, surfaces and interfaces and clusters, etc.




Theory of the Inhomogeneous Electron Gas


Book Description

The theory of the inhomogeneous electron gas had its origin in the Thomas Fermi statistical theory, which is discussed in the first chapter of this book. This already leads to significant physical results for the binding energies of atomic ions, though because it leaves out shell structure the results of such a theory cannot reflect the richness of the Periodic Table. Therefore, for a long time, the earlier method proposed by Hartree, in which each electron is assigned its own personal wave function and energy, dominated atomic theory. The extension of the Hartree theory by Fock, to include exchange, had its parallel in the density description when Dirac showed how to incorporate exchange in the Thomas-Fermi theory. Considerably later, in 1951, Slater, in an important paper, showed how a result similar to but not identical with that of Dirac followed as a simplification of the Hartree-Fock method. It was Gombas and other workers who recognized that one could also incorporate electron correlation consistently into the Thomas-Fermi-Dirac theory by using uniform electron gas relations locally, and progress had been made along all these avenues by the 1950s.




Electron Correlation and Magnetism in Narrow-Band Systems


Book Description

Speech by Toyosaburo Taniguchi Welcome my friends to the Third International Symposium, Division on the Theory of Condensed Matter, of the Taniguchi Foundation. The need is now greater than ever for Japan to consider how to strengthen and foster international understanding between nations, peoples and societies, and how to contribute towards the establishment of peace and prosperity in the world. For more than twenty years, I have been supporting a symposium on mathe matics in which distinguished scholars from allover the world have engaged in free discussions. In this symposium, all the participants live together in community style. I have heard from members of some of these study groups that this type of setup has helped to strengthen their ties and relationships with their colleagues on a personal basis. What developed in the mathematics group led me to reorganize and strengthen the Taniguchi Foundation only a few years ago through additional funding. In order to effectively translate the objectives of the Foundation into action with the funds available, it becomes necessary to select those fields which are not necessarily in the limelight of popular interest, which means those fields which, I am afraid, are low in funding. I would rather choose from modest unimpressive academic fields than for the Foundation, projects those that stand out in gaudy, gorgeous popular acclaim.




Metal Surface Electron Physics


Book Description

During the last thirty years metal surface physics, or generally surface science, has come a long way due to the development of vacuum technology and the new surface sensitive probes on the experimental side and new methods and powerful computational techniques on the theoretical side. The aim of this book is to introduce the reader to the essential theoretical aspects of the atomic and electronic structure of metal surfaces and interfaces. The book gives some theoretical background to students of experimental and theoretical physics to allow further exploration into research in metal surface physics.The book consists of three parts. The first part is devoted to classical description of geometry and structure of metal crystals and their surfaces and surface thermodynamics including properties of small metallic particles. Part two deals with quantum-mechanical description of electronic properties of simple metals. It starts from the free electron gas description and introduces the many body effects in the framework of the density functional theory, in order to discuss the basic surface electronic properties of simple metals. This part outlines also properties of alloy surfaces, the quantum size effect and small metal clusters. Part three gives a succinct description of metal surfaces in contact with foreign atoms and surfaces. It treats the work function changes due to alkali metal adsorption on metals, adhesion between metals and discusses the universal aspects of the binding energy curves. In each case extensive reference lists are provided.




The Electronic Structure of Complex Systems


Book Description

We present here the transcripts of lectures and talks which were delivered at the NATO ADVANCED STUDY INSTITUTE "Electronic Structure of Complex Systems" held at the State University of Ghent, Belgium during the period July 12-23, 1982. The aim of these lectures was to highlight some of the current progress in our understanding of the electronic structure of com plex systems. A massive leap forward is obtained in bandstructure calculations with the advent of linear methods. The bandtheory also profitted tremendously from the recent developments in the density functional theories for the properties of the interacting electron gas in the presence of an external field of ions. The means of per forming fast bandstructure calculations and the confidence in the underlying potential functions have led in the past five years or so to a wealth of investigations into the electronic properties of elemental solids and compounds. The study of the trends of the electronic structure through families of materials provided invalu able insights for the prediction of new materials. The detailed study of the electronic structure of specific solids was not neglected and our present knowledge of d- and f-metals and metal hydrides was reviewed. For those systems we also investi gated the accuracy of the one electron potentials in fine detail and we complemented this with the study of small clusters of atoms where our calculations are amenable to comparison with the frontiers of quantum chemistry calculations.




Alloy Phase Stability


Book Description

One of the ultimate goals of materials research is to develop a fun damental and predictive understanding of the physical and metallurgical properties of metals and alloys. Such an understanding can then be used in the design of materials having novel properties or combinations of proper ties designed to meet specific engineering applications. The development of new and useful alloy systems and the elucidation of their properties are the domain of metallurgy. Traditionally, the search for new alloy systems has been conducted largely on a trial and error basis, guided by the skill and intuition of the metallurgist, large volumes of experimental data, the principles of 19th century thermodynamics and ad hoc semi-phenomenological models. Recently, the situation has begun to change. For the first time, it is possible to understand the underlying mechanisms that control the formation of alloys and determine their properties. Today theory can begin to offer guidance in predicting the properties of alloys and in developing new alloy systems. Historically, attempts directed toward understanding phase stability and phase transitions have proceeded along distinct and seemingly diverse lines. Roughly, we can divide these approaches into the following broad categories. 1. Experimental determination of phase diagrams and related properties, 2. Thermodynamic/statistical mechanical approaches based on semi phenomenological models, and 3. Ab initio quantum mechanical methods. Metallurgists have traditionally concentrated their efforts in cate gories 1 and 2, while theoretical physicists have been preoccupied with 2 and 3.




New Technical Books


Book Description