Quantum Theory of the Electron Liquid


Book Description

Modern electronic devices and novel materials often derive their extraordinary properties from the intriguing, complex behavior of large numbers of electrons forming what is known as an electron liquid. This book provides an in-depth introduction to the physics of the interacting electron liquid in a broad variety of systems, including metals, semiconductors, artificial nano-structures, atoms and molecules. One, two and three dimensional systems are treated separately and in parallel. Different phases of the electron liquid, from the Landau Fermi liquid to the Wigner crystal, from the Luttinger liquid to the quantum Hall liquid are extensively discussed. Both static and time-dependent density functional theory are presented in detail. Although the emphasis is on the development of the basic physical ideas and on a critical discussion of the most useful approximations, the formal derivation of the results is highly detailed and based on the simplest, most direct methods.




Liquid Cell Electron Microscopy


Book Description

2.6.2 Electrodes for Electrochemistry




Introduction to Liquid State Physics


Book Description

This important book provides an introduction to the liquid state. A qualitative description of liquid properties is first given, followed by detailed chapters on thermodynamics, liquid structure in relation to interaction forces and transport properties such as diffusion and viscosity. Treatment of complex fluids such as anisotropic liquid crystals and polymers, and of technically important topics such as non-Newtonian and turbulent flows, is included. Surface properties and characteristics of the liquid-vapour critical point are also discussed. While the book focuses on classical liquids, the final chapter deals with quantal fluids.




The Electron Liquid Paradigm in Condensed Matter Physics


Book Description

The electron liquid paradigm is at the basis of most of our current understanding of the physical properties of electronic systems. Quite remarkably, the latter are nowadays at the intersection of the most exciting areas of science: materials science, quantum chemistry, nano-electronics, biology and quantum computation. Accordingly, its importance can hardly be overestimated. During the past 20 years the field has witnessed momentous developments, which are partly covered in this new volume. Advances in semiconductor technology have allowed the realizations of ultra-pure electron liquids whose density, unlike that of the ones spontaneously occurring in nature, can be tuned by electrical means, allowing a systematic exploration of both strongly and weakly correlated regimes. Most of these system are two- or even one-dimensional and can be coupled together in the form of multi-layers or multi-wires, opening vast observational possibilities. On the theoretical side, quantum Monte Carlo methods have allowed an essentially exact determination of the ground-state energy of the electron liquid, and have provided partial answers to the still open question of the structure of its phase diagram. Starting from the 1980s some truly revolutionary concepts have emerged, which are well represented in this volume.




Excess Electrons in Dielectric Media


Book Description

This book provides a comprehensive review of the present knowledge and current problems concerning physical-chemical aspects of the behavior of excess electrons in various media. The book's 13 chapters strike a balance between theoretical and experimental accounts and provide in-depth presentations of specific subjects. Among the several topics discussed in this stimulating volume are primary interactions, transport, and relaxation of excess electrons of a few tens of electron-Volts in various solid and liquid materials; energetics and transport properties of electrons after thermalization in non-polar dielectric liquids; quantum simulation methods; and electron solvation in polar liquids and of excess electrons trapped in polar matrices at low temperature. Applications of these concepts are discussed as well, including hot electron transport in silicon dioxide, the fate of excess electrons created in polar dielectric liquids by photoelectrochemical methods or by cathodic generation, and excess electron production and decay in organic microheterogeneous systems. Researchers, instructors, and engineers working in the radiation sciences, condensed-matter physics, chemical physics, biophysics, photochemistry, and the biochemistry of electron transfer and electrochemistry should consider this book to be an invaluable reference resource.




Electron Liquids


Book Description

Press, Gordon & Breach Science Publishers, Inc. , and lOP Publishing Ltd. The author's original work in this book was supported by the National Science Foundation and the Office of Naval Research. Buffalo, NY A. Isihara July 1992 Preface The study of electronic properties reveals a common basis for a variety of systems, including gaseous plasmas, ionic solutions, metals, and semiconduc tors. This study started with one-electron properties in free space, as discussed in solid-state books. However, significant progress has been made recently in more realistic and complicated cases with interactions, confinements, im purities, and fields. Moreover, the recent discoveries of the quantum Hall ef fect, high-Tc superconductors, and localization phenomena, along with the in troduction of low-dimensional materials have opened new areas and have led to a tremendous number of articles in existing journals and even new specialized journals. This book has been written to provide a new, comprehen sive review on electronic properties in such diverse areas and materials. The title indicates emphasis on electron correlations. Chapter 1 starts with an introductory description of electron systems, including classification, characterization, and models. It provides the reader with a general account of the amazingly diverse electron systems. It is followed by discussions on strong ly coupled gaseous plasmas, electron-hole liquids, magnetic response, low dimensional systems, heavy Fermions, high-Tc superconductivity, localization, and the quantum Hall effect.




Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems


Book Description

Supercritical fluids are increasingly being used in energy conversion and fluid dynamics studies for energy-related systems and applications. These new applications are contributing to both the increase of energy efficiency as well as greenhouse gas reduction. Such research is critical for scientific advancement and industrial innovations that can support environmentally friendly strategies for sustainable energy systems. The Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems is a comprehensive two-volume reference that covers the most recent and challenging issues and outlooks for the applications and innovations of supercritical fluids. The book first converts basic thermo-dynamic behaviors and “abnormal” properties from a thermophysical aspect, then basic heat transfer and flow properties, recent new findings of its physical aspect and indications, chemical engineering properties, micro-nano-scale phenomena, and transient behaviors in fast and critical environments. It is ideal for engineers, energy companies, environmentalists, researchers, academicians, and students studying supercritical fluids and their applications for creating sustainable energy systems.




Nonlinear Physics of Plasmas


Book Description

A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.




Advanced Applications of Supercritical Fluids in Energy Systems


Book Description

Supercritical fluids have been utilized for numerous scientific advancements and industrial innovations. As the concern for environmental sustainability grows, these fluids have been increasingly used for energy efficiency purposes. Advanced Applications of Supercritical Fluids in Energy Systems is a pivotal reference source for the latest academic material on the integration of supercritical fluids into contemporary energy-related applications. Highlighting innovative discussions on topics such as renewable energy, fluid dynamics, and heat and mass transfer, this book is ideally designed for researchers, academics, professionals, graduate students, and practitioners interested in the latest trends in energy conversion.




The Liquid State and Its Electrical Properties


Book Description

As the various disciplines of science advance, they proliferate and tend to become more esoteric. Barriers of specialized terminologies form, which cause scientists to lose contact with their colleagues, and differences in points-of-view emerge which hinder the unification of knowledge among the various disciplines, and even within a given discipline. As a result, the scientist, and especially the student, is in many instances offered fragmented glimpses of subjects that are funda mentally synthetic and that should be treated in their own right. Such seems to be the case of the liquid state. Unlike the other states of matter -- gases, solids, and plasmas -- the liquid state has not yet received unified treatment, probably because it has been the least explored and remains the least understood state of matter. Occasionally, events occur which help remove some of the barriers that separate scientists and disciplines alike. Such an event was the ASI on The Liquid State held this past July at the lovely Hotel Tivoli Sintra, in the picturesque town of Sintra, Portugal, approximately 30 km northwest of Lisbon. Since this broad a subject could not be covered in one Institute, the focus of the ASI was on a theme that provided a common thread of understanding for all in attendance -- the Electrical Proper ties of the Liquid State.