Elementary Math for Computer Science with Python


Book Description

Learning to code is an attractive option for many parents and elementary-aged students. Most simple computer programs, however, rely on math concepts that are not yet part of a typical, elementary school curriculum. This text solves that problem by presenting math concepts selected for their importance to computer science in a way that is accessible to a younger audience through: visual models and worked examples; thoughtfully sequenced, scaffolded practice problems; written introductions, illustrations and word problems that provide real-world context; coding examples and projects written in Python; coding challenges and extensions; solutions to all practice problems, comprehension questions and selected challenges. While many math and computer science courses equip students to complete problems by rote and copy an instructor's code, this curriculum is aimed toward facilitating the meaningful learning necessary for students to solve problems and produce original work. Note: it is recommended that students are reading at a third grade level and familiar with whole-number addition, subtraction, multiplication and division.




Math Adventures with Python


Book Description

Learn math by getting creative with code! Use the Python programming language to transform learning high school-level math topics like algebra, geometry, trigonometry, and calculus! Math Adventures with Python will show you how to harness the power of programming to keep math relevant and fun. With the aid of the Python programming language, you'll learn how to visualize solutions to a range of math problems as you use code to explore key mathematical concepts like algebra, trigonometry, matrices, and cellular automata. Once you've learned the programming basics like loops and variables, you'll write your own programs to solve equations quickly, make cool things like an interactive rainbow grid, and automate tedious tasks like factoring numbers and finding square roots. You'll learn how to write functions to draw and manipulate shapes, create oscillating sine waves, and solve equations graphically. You'll also learn how to: - Draw and transform 2D and 3D graphics with matrices - Make colorful designs like the Mandelbrot and Julia sets with complex numbers - Use recursion to create fractals like the Koch snowflake and the Sierpinski triangle - Generate virtual sheep that graze on grass and multiply autonomously - Crack secret codes using genetic algorithms As you work through the book's numerous examples and increasingly challenging exercises, you'll code your own solutions, create beautiful visualizations, and see just how much more fun math can be!




Hacking Discrete Math With Python 3


Book Description

Elementary discrete math for undergraduate computer science or computer engineering students. Covers basic topics including mathematical logic, direct proof, proof by contradiction, proof by contraposition, counter-example, induction, structural induction, elementary number theory, division, sets, sequences, functions, cardinality, counting, recurrence, recursion, and graph theory. Examples are given in Python 3.




Practical Discrete Mathematics


Book Description

A practical guide simplifying discrete math for curious minds and demonstrating its application in solving problems related to software development, computer algorithms, and data science Key FeaturesApply the math of countable objects to practical problems in computer scienceExplore modern Python libraries such as scikit-learn, NumPy, and SciPy for performing mathematicsLearn complex statistical and mathematical concepts with the help of hands-on examples and expert guidanceBook Description Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks. Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level. As you learn the language of discrete mathematics, you'll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you'll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science. By the end of this book, you'll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning. What you will learnUnderstand the terminology and methods in discrete math and their usage in algorithms and data problemsUse Boolean algebra in formal logic and elementary control structuresImplement combinatorics to measure computational complexity and manage memory allocationUse random variables, calculate descriptive statistics, and find average-case computational complexitySolve graph problems involved in routing, pathfinding, and graph searches, such as depth-first searchPerform ML tasks such as data visualization, regression, and dimensionality reductionWho this book is for This book is for computer scientists looking to expand their knowledge of discrete math, the core topic of their field. University students looking to get hands-on with computer science, mathematics, statistics, engineering, or related disciplines will also find this book useful. Basic Python programming skills and knowledge of elementary real-number algebra are required to get started with this book.




Programming for Computations - Python


Book Description

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.




Programming for Computations - Python


Book Description

This book is published open access under a CC BY 4.0 license. This book presents computer programming as a key method for solving mathematical problems. This second edition of the well-received book has been extensively revised: All code is now written in Python version 3.6 (no longer version 2.7). In addition, the two first chapters of the previous edition have been extended and split up into five new chapters, thus expanding the introduction to programming from 50 to 150 pages. Throughout the book, the explanations provided are now more detailed, previous examples have been modified, and new sections, examples and exercises have been added. Also, a number of small errors have been corrected. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style employed is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows students to write simple programs for solving common mathematical problems with numerical methods in the context of engineering and science courses. The emphasis is on generic algorithms, clean program design, the use of functions, and automatic tests for verification.




HT THINK LIKE A COMPUTER SCIEN


Book Description

The goal of this book is to teach you to think like a computer scientist. This way of thinking combines some of the best features of mathematics, engineering, and natural science. Like mathematicians, computer scientists use formal languages to denote ideas (specifically computations). Like engineers, they design things, assembling components into systems and evaluating tradeoffs among alternatives. Like scientists, they observe the behavior of complex systems, form hypotheses, and test predictions. The single most important skill for a computer scientist is problem solving. Problem solving means the ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately. As it turns out, the process of learning to program is an excellent opportunity to practice problem-solving skills. That's why this chapter is called, The way of the program. On one level, you will be learning to program, a useful skill by itself. On another level, you will use programming as a means to an end. As we go along, that end will become clearer.




Applied Scientific Computing


Book Description

This easy-to-understand textbook presents a modern approach to learning numerical methods (or scientific computing), with a unique focus on the modeling and applications of the mathematical content. Emphasis is placed on the need for, and methods of, scientific computing for a range of different types of problems, supplying the evidence and justification to motivate the reader. Practical guidance on coding the methods is also provided, through simple-to-follow examples using Python. Topics and features: provides an accessible and applications-oriented approach, supported by working Python code for many of the methods; encourages both problem- and project-based learning through extensive examples, exercises, and projects drawn from practical applications; introduces the main concepts in modeling, python programming, number representation, and errors; explains the essential details of numerical calculus, linear, and nonlinear equations, including the multivariable Newton method; discusses interpolation and the numerical solution of differential equations, covering polynomial interpolation, splines, and the Euler, Runge–Kutta, and shooting methods; presents largely self-contained chapters, arranged in a logical order suitable for an introductory course on scientific computing. Undergraduate students embarking on a first course on numerical methods or scientific computing will find this textbook to be an invaluable guide to the field, and to the application of these methods across such varied disciplines as computer science, engineering, mathematics, economics, the physical sciences, and social science.




Discovering Computer Science


Book Description

Discovering Computer Science: Interdisciplinary Problems, Principles, and Python Programming introduces computational problem solving as a vehicle of discovery in a wide variety of disciplines. With a principles-oriented introduction to computational thinking, the text provides a broader and deeper introduction to computer science than typical introductory programming books. Organized around interdisciplinary problem domains, rather than programming language features, each chapter guides students through increasingly sophisticated algorithmic and programming techniques. The author uses a spiral approach to introduce Python language features in increasingly complex contexts as the book progresses. The text places programming in the context of fundamental computer science principles, such as abstraction, efficiency, and algorithmic techniques, and offers overviews of fundamental topics that are traditionally put off until later courses. The book includes thirty well-developed independent projects that encourage students to explore questions across disciplinary boundaries. Each is motivated by a problem that students can investigate by developing algorithms and implementing them as Python programs. The book's accompanying website — http://discoverCS.denison.edu — includes sample code and data files, pointers for further exploration, errata, and links to Python language references. Containing over 600 homework exercises and over 300 integrated reflection questions, this textbook is appropriate for a first computer science course for computer science majors, an introductory scientific computing course or, at a slower pace, any introductory computer science course.




Math Adventures with Python


Book Description

Learn math by getting creative with code! Use the Python programming language to transform learning high school-level math topics like algebra, geometry, trigonometry, and calculus! Math Adventures with Python will show you how to harness the power of programming to keep math relevant and fun. With the aid of the Python programming language, you'll learn how to visualize solutions to a range of math problems as you use code to explore key mathematical concepts like algebra, trigonometry, matrices, and cellular automata. Once you've learned the programming basics like loops and variables, you'll write your own programs to solve equations quickly, make cool things like an interactive rainbow grid, and automate tedious tasks like factoring numbers and finding square roots. You'll learn how to write functions to draw and manipulate shapes, create oscillating sine waves, and solve equations graphically. You'll also learn how to: - Draw and transform 2D and 3D graphics with matrices - Make colorful designs like the Mandelbrot and Julia sets with complex numbers - Use recursion to create fractals like the Koch snowflake and the Sierpinski triangle - Generate virtual sheep that graze on grass and multiply autonomously - Crack secret codes using genetic algorithms As you work through the book's numerous examples and increasingly challenging exercises, you'll code your own solutions, create beautiful visualizations, and see just how much more fun math can be!