Elementary Methods of Graph Ramsey Theory


Book Description

This book is intended to provide graduate students and researchers in graph theory with an overview of the elementary methods of graph Ramsey theory. It is especially targeted towards graduate students in extremal graph theory, graph Ramsey theory, and related fields, as the included contents allow the text to be used in seminars. It is structured in thirteen chapters which are application-focused and largely independent, enabling readers to target specific topics and information to focus their study. The first chapter includes a true beginner’s overview of elementary examples in graph Ramsey theory mainly using combinatorial methods. The following chapters progress through topics including the probabilistic methods, algebraic construction, regularity method, but that's not all. Many related interesting topics are also included in this book, such as the disproof for a conjecture of Borsuk on geometry, intersecting hypergraphs, Turán numbers and communication channels, etc.




Star-Critical Ramsey Numbers for Graphs


Book Description

This text is a comprehensive survey of the literature surrounding star-critical Ramsey numbers. First defined by Jonelle Hook in her 2010 dissertation, these numbers aim to measure the sharpness of the corresponding Ramsey numbers by determining the minimum number of edges needed to be added to a critical graph for the Ramsey property to hold. Despite being in its infancy, the topic has gained significant attention among Ramsey theorists. This work provides researchers and students with a resource for studying known results and their complete proofs. It covers typical results, including multicolor star-critical Ramsey numbers for complete graphs, trees, cycles, wheels, and n-good graphs, among others. The proofs are streamlined and, in some cases, simplified, with a few new results included. The book also explores the connection between star-critical Ramsey numbers and deleted edge numbers, which focus on destroying the Ramsey property by removing edges. The book concludes with open problems and conjectures for researchers to consider, making it a valuable resource for those studying the field of star-critical Ramsey numbers.




A Walk Through Combinatorics


Book Description

This is a textbook for an introductory combinatorics course that can take up one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course. Just as with the first edition, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible for the talented and hard-working undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings and Eulerian and Hamiltonian cycles. The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, and algorithms and complexity. As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.




The Probabilistic Method


Book Description

Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.




Combinatorial Optimization and Applications


Book Description

The two-volume set LNCS 14461 and LNCS 14462 constitutes the refereed proceedings of the 17th International Conference on Combinatorial Optimization and Applications, COCOA 2023, held in Hawaii, HI, USA, during December 15–17, 2023. The 73 full papers included in the proceedings were carefully reviewed and selected from 117 submissions. They were organized in topical sections as follows: Part I: Optimization in graphs; scheduling; set-related optimization; applied optimization and algorithm; Graph planer and others; Part II: Modeling and algorithms; complexity and approximation; combinatorics and computing; optimization and algorithms; extreme graph and others; machine learning, blockchain and others.




The Mathematical Coloring Book


Book Description

This book provides an exciting history of the discovery of Ramsey Theory, and contains new research along with rare photographs of the mathematicians who developed this theory, including Paul Erdös, B.L. van der Waerden, and Henry Baudet.




Surveys in Combinatorics


Book Description

This book contains surveys of recent important developments in combinatorics covering a wide range of areas in the field.




Erdös on Graphs


Book Description

This book is a tribute to Paul Erdos, the wandering mathematician once described as the "prince of problem solvers and the absolute monarch of problem posers." It examines the legacy of open problems he left to the world after his death in 1996.




Ramsey Theory for Product Spaces


Book Description

Ramsey theory is a dynamic area of combinatorics that has various applications in analysis, ergodic theory, logic, number theory, probability theory, theoretical computer science, and topological dynamics. This book is devoted to one of the most important areas of Ramsey theory—the Ramsey theory of product spaces. It is a culmination of a series of recent breakthroughs by the two authors and their students who were able to lift this theory to the infinite-dimensional case. The book presents many major results and methods in the area, such as Szemerédi's regularity method, the hypergraph removal lemma, and the density Hales–Jewett theorem. This book addresses researchers in combinatorics but also working mathematicians and advanced graduate students who are interested in Ramsey theory. The prerequisites for reading this book are rather minimal: it only requires familiarity, at the graduate level, with probability theory and real analysis. Some familiarity with the basics of Ramsey theory would be beneficial, though not necessary.




Combinatorics and Graph Theory


Book Description

These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.