Elementary Statistics: Vol 2
Author :
Publisher : Pearson South Africa
Page : 276 pages
File Size : 26,5 MB
Release : 2000
Category : Commercial statistics
ISBN : 9781868910755
Author :
Publisher : Pearson South Africa
Page : 276 pages
File Size : 26,5 MB
Release : 2000
Category : Commercial statistics
ISBN : 9781868910755
Author : Barbara Illowsky
Publisher :
Page : 2106 pages
File Size : 39,16 MB
Release : 2023-12-13
Category : Mathematics
ISBN :
Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
Author : Gareth James
Publisher : Springer Nature
Page : 617 pages
File Size : 21,7 MB
Release : 2023-08-01
Category : Mathematics
ISBN : 3031387473
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Author : Larry Wasserman
Publisher : Springer Science & Business Media
Page : 446 pages
File Size : 25,34 MB
Release : 2013-12-11
Category : Mathematics
ISBN : 0387217363
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Author : Ron Larson
Publisher : Prentice Hall
Page : 615 pages
File Size : 17,8 MB
Release : 2006
Category : Mathematics
ISBN : 9780131483163
For algebra-based Introductory Statistics courses. Offering an approach with a visual/graphical emphasis, this text offers a number of examples on the premise that students learn best by doing. This book features an emphasis on interpretation of results and critical thinking over calculations.
Author : F.M. Dekking
Publisher : Springer Science & Business Media
Page : 485 pages
File Size : 16,36 MB
Release : 2006-03-30
Category : Mathematics
ISBN : 1846281687
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
Author : Mario F. Triola
Publisher :
Page : 0 pages
File Size : 38,53 MB
Release : 1997-08
Category :
ISBN : 9780201859218
Addison-Wesley is proud to celebrate the Tenth Edition of Elementary Statistics.& This text is highly regarded because of its engaging and understandable introduction to statistics. The&author's commitment to providing student-friendly guidance through the material and giving students opportunities to apply their newly learned skills in a real-world context has made Elementary Statistics the #1 best-seller in the market.
Author : Peter J. Bickel
Publisher : CRC Press
Page : 487 pages
File Size : 21,7 MB
Release : 2015-11-04
Category : Business & Economics
ISBN : 1498722709
Mathematical Statistics: Basic Ideas and Selected Topics, Volume II presents important statistical concepts, methods, and tools not covered in the authors' previous volume. This second volume focuses on inference in non- and semiparametric models. It not only reexamines the procedures introduced in the first volume from a more sophisticated point o
Author : Trevor Hastie
Publisher : Springer Science & Business Media
Page : 545 pages
File Size : 21,9 MB
Release : 2013-11-11
Category : Mathematics
ISBN : 0387216065
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
Author : Peter Dalgaard
Publisher : Springer Science & Business Media
Page : 370 pages
File Size : 35,25 MB
Release : 2008-06-27
Category : Mathematics
ISBN : 0387790543
This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.