Hypersonic and High Temperature Gas Dynamics


Book Description

This book is a self-contained text for those students and readers interested in learning hypersonic flow and high-temperature gas dynamics. It assumes no prior familiarity with either subject on the part of the reader. If you have never studied hypersonic and/or high-temperature gas dynamics before, and if you have never worked extensively in the area, then this book is for you. On the other hand, if you have worked and/or are working in these areas, and you want a cohesive presentation of the fundamentals, a development of important theory and techniques, a discussion of the salient results with emphasis on the physical aspects, and a presentation of modern thinking in these areas, then this book is also for you. In other words, this book is designed for two roles: 1) as an effective classroom text that can be used with ease by the instructor, and understood with ease by the student; and 2) as a viable, professional working tool for engineers, scientists, and managers who have any contact in their jobs with hypersonic and/or high-temperature flow.










Hypersonic Flow Theory


Book Description

Hypersonic Flow Theory presents the fundamentals of fluid mechanics, focusing on the hypersonic flow theory and approaches in theoretical aerodynamics. This book discusses the assumptions underlying hypersonic flow theory, unified supersonic-hypersonic similitude, two-dimensional and axisymmetric bodies, and circular cylinder. The constant-streamtube-area approximation, streamtube-continuity methods, and tangent-wedge and tangent-cone are also deliberated. This text likewise covers the similar laminar boundary layer solutions, bluntness induced interactions on slender bodies, and free molecule transfer theory. The dynamics of hypersonic flight or hypersonic wing theory, magnetohydrodynamic theory, or any developments involving treatment of the Boltzmann equation are not included. This publication is intended for hypersonic aerodynamicists, students, and researchers conducting work on the hypersonic flow phenomena.




Facing the Heat Barrier


Book Description

This volume from The NASA History Series presents an overview of the science of hypersonics, the study of flight at speeds at which the physics of flows is dominated by aerodynamic heating. The survey begins during the years immediately following World War II, with the first steps in hypersonic research: the development of missile nose cones and the X-15; the earliest concepts of hypersonic propulsion; and the origin of the scramjet engine. Next, it addresses the re-entry problem, which came to the forefront during the mid-1950s, showing how work in this area supported the manned space program and contributed to the development of the orbital shuttle. Subsequent chapters explore the fading of scramjet studies and the rise of the National Aerospace Plane (NASP) program of 1985–95, which sought to lay groundwork for single-stage vehicles. The program's ultimate shortcomings — in terms of aerodynamics, propulsion, and materials — are discussed, and the book concludes with a look at hypersonics in the post-NASP era, including the development of the X-33 and X-34 launch vehicles, further uses for scramjets, and advances in fluid mechanics. Clearly, ongoing research in hypersonics has yet to reach its full potential, and readers with an interest in aeronautics and astronautics will find this book a fascinating exploration of the field's history and future.




Review and Evaluation of the Air Force Hypersonic Technology Program


Book Description

This study was undertaken in response to a request by the U.S. Air Force that the National Research Council (NRC) examine whether the technologies that underlie the concept of a hypersonic, air-launched, air-breathing, hydrocarbon-fueled missile with speeds up to Mach 81 can be demonstrated in time to be initially operational by 2015. To conduct the study, the NRC appointed the Committee on Review and Evaluation of the Air Force Hypersonic Technology Program, under the auspices of the Air Force Science and Technology Board.




Prediction and Validation Technologies of Aerodynamic Force and Heat for Hypersonic Vehicle Design


Book Description

This book provides an overview of advanced prediction and verification technologies for aerodynamics and aerothermodynamics and assesses a number of critical issues in advanced hypersonic vehicle design. Focusing on state-of-the-art theories and promising technologies for engineering applications, it also presents a range of representative practical test cases. Given its scope, the book offers a valuable asset for researchers who are interested in thermodynamics, aircraft design, wind tunnel testing, fluid dynamics and aerothermodynamics research methods, introducing them to inspiring new research topics.




Hypersonic Flow


Book Description

The Ideal Text/Reference for Students, Engineers, and Research Scientists Not since the early days of space flight has the subject of hypersonic flow been of such importance to aerospace and mechanical engineers, research scientists, and students. Spurred by visions of hypersonic transport, and aerospace planes, the government now supports studies of hypersonic flow in at least eighteen graduate research centers across the nation, and numerous major universities now offer graduate and senior level undergraduate courses on the subject. Hypersonic Flow is the ideal text/reference for students and professionals interested in this burgeoning field. Written by a nationally recognized authority on the subject, it features a clear, accessible writing style along with sufficient depth and detail for self-study, and it is organized for speedy location of specific information. Numerous end-of-chapter exercises and homework problems enhance and solidify the student’s understanding of complex and sophisticated material. This book provides an in-depth look at all the major topics and issues associated with fluid flow at speeds in excess of Mach 5, including: elementary hypersonic flow problems; general similarity concepts; elements of hypersonic small disturbance theory; and much more. In addition, this book brings you: The most extensive coverage of viscous effects available anywhere A unique, in-depth presentation of waveriders Extensive treatment of asymmetric conical flows An introduction to computational fluid dynamics Extensive treatment of real-gas effects




Hypersonic Airbreathing Propulsion


Book Description

An almost entirely self-contained engineering textbook primarily for use in undergraduate and graduate courses in airbreathing propulsion. It provides a broad and basic introduction to the elements needed to work in the field as it develops and grows. Homework problems are provided for almost every individual subject. An extensive array of PC-based user-friendly computer programs is provided in order to facilitate repetitious and/or complex calculations. Annotation copyright by Book News, Inc., Portland, OR




Engineering Turbulence Modelling and Experiments - 4


Book Description

These proceedings contain the papers presented at the 4th International Symposium on Engineering Turbulence Modelling and Measurements held at Ajaccio, Corsica, France from 24-26 May 1999. It follows three previous conferences on the topic of engineering turbulence modelling and measurements. The purpose of this series of symposia is to provide a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. Turbulence is still one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends more and more on the performance of the turbulence models. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation.