Elements of Quantum Mechanics


Book Description

Elements of Quantum Mechanics provides a solid grounding in the fundamentals of quantum theory and is designed for a first semester graduate or advanced undergraduate course in quantum mechanics for chemistry, chemical engineering, materials science, and physics students. The text includes full development of quantum theory. It begins with the most basic concepts of quantum theory, assuming only that students have some familiarity with such ideas as the uncertainty principle and quantized energy levels. Fayer's accessible approach presents balanced coverage of various quantum theory formalisms, such as the Schr: odinger representation, raising and lowering operator techniques, the matrix representation, and density matrix methods. He includes a more extensive consideration of time dependent problems than is usually found in an introductory graduate course. Throughout the book, sufficient mathematical detail and classical mechanics background are provided to enable students to follow the quantum mechanical developments and analysis of physical phenomena. Fayer provides many examples and problems with fully detailed analytical solutions. Creating a distinctive flavor throughout, Fayer has produced a challenging text with exercises designed to help students become fluent in the concepts and language of modern quantum theory, facilitating their future understanding of more specialized topics. The book concludes with a section containing problems for each chapter that amplify and expand the topics covered in the book. A complete and detailed solution manual is available.




Quantum Theory for Chemical Applications


Book Description

"Quantum Theory for Chemical Applications (QTCA) Quantum theory, or more specifically, quantum mechanics is endlessly fascinating, curious & strange, and often considered to be difficult to learn. It is true that quantum mechanics is a mathematical theory. Its scope, its predictions, the wisdom we gain from its results, all these become fully clear only in the context of the relevant equations and calculations. But the study of quantum mechanics is definitely worth the effort, and - as I like to tell my students- it is not rocket science"--




Introduction to Quantum Mechanics with Applications to Chemistry


Book Description

Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.




Quantum Theory for Chemical Applications


Book Description

Quantum theory and computational chemistry have become integral to the fields of chemistry, chemical engineering, and materials chemistry. Concepts of chemical bonding, band structure, material properties, and interactions between light and matter at the molecular scale tend to be expressed in the framework of orbital theory, even when numerical calculations go beyond simple orbital models. Yet, the connections between these theoretical models and experimental observations are often unclear. It is important--now more than ever--that students master quantum theory if they are going to apply chemical concepts. In this book, Jochen Autschbach connects the abstract with the concrete in an elegant way, creating a guiding text for scholars and students alike. Quantum Theory for Chemical Applications covers the quantum theory of atoms, molecules, and extended periodic systems. Autschbach goes beyond standard textbooks by connecting the molecular and band structure perspectives, covering response theory, and more. The book is broken into four parts: Basic Theoretical Concepts; Atomic, Molecular, and Crystal Orbitals; Further Basic Concepts of Quantum Theory; and Advanced Topics, such as relativistic quantum chemistry and molecule-light interactions. The foresight Autschbach provides is immense, and he sets up a solid theoretical background for nearly every quantum chemistry method used in contemporary research. Because quantum theory tells us what the electrons do in atoms, molecules, and extended systems, the pages in this book are full of answers to questions both long-held and never-before considered.




Molecular Physics and Elements of Quantum Chemistry


Book Description

This textbook introduces the molecular and quantum chemistry needed to understand the physical properties of molecules and their chemical bonds. It follows the authors' earlier textbook "The Physics of Atoms and Quanta" and presents both experimental and theoretical fundamentals for students in physics and physical and theoretical chemistry. The new edition treats new developments in areas such as high-resolution two-photon spectroscopy, ultrashort pulse spectroscopy, photoelectron spectroscopy, optical investigation of single molecules in condensed phase, electroluminescence, and light-emitting diodes.




Principles and Applications of Quantum Chemistry


Book Description

Principles and Applications of Quantum Chemistry offers clear and simple coverage based on the author's extensive teaching at advanced universities around the globe. Where needed, derivations are detailed in an easy-to-follow manner so that you will understand the physical and mathematical aspects of quantum chemistry and molecular electronic structure. Building on this foundation, this book then explores applications, using illustrative examples to demonstrate the use of quantum chemical tools in research problems. Each chapter also uses innovative problems and bibliographic references to guide you, and throughout the book chapters cover important advances in the field including: Density functional theory (DFT) and time-dependent DFT (TD-DFT), characterization of chemical reactions, prediction of molecular geometry, molecular electrostatic potential, and quantum theory of atoms in molecules. - Simplified mathematical content and derivations for reader understanding - Useful overview of advances in the field such as Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) - Accessible level for students and researchers interested in the use of quantum chemistry tools




Quantum Chemistry


Book Description

`Quantum Chemistry [the branch of Computational Chemistry that applies the laws of Quantum Mechanics to chemical systems] is one of the most dynamic fields of contemporary chemistry, providing a solid foundation for all of chemistry, and serving as the basis for practical, computational methodologies with applications in virtually all branches of chemistry ... The increased sophistication, accuracy and scope of the theory of chemistry are due to a large extent to the spectacular development of quantum chemistry, and in this book the authors have made a remarkable effort to provide a modern account of the field.' From the Foreword by Paul Mezey, University of Saskatchewan. Quantum Chemistry: Fundamentals to Applications develops quantum chemistry all the way from the fundamentals, found in Part I, through the applications that make up Part II. The applications include: molecular structure; spectroscopy; thermodynamics; chemical reactions; solvent effects; and excited state chemistry. The importance of this field is underscored by the fact that the 1998 Nobel Prize in Chemistry was awarded for the development of Quantum Chemistry.




Quantum Mechanics with Applications to Nanotechnology and Information Science


Book Description

Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. - This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena - The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology - Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology - As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today - There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has




Theoretical Chemistry and Physics of Heavy and Superheavy Elements


Book Description

Quantum mechanics provides the fundamental theoretical apparatus for describing the structure and properties of atoms and molecules in terms of the behaviour of their fundamental components, electrons and nudeL For heavy atoms and molecules containing them, the electrons can move at speeds which represent a substantial fraction of the speed of light, and thus relativity must be taken into account. Relativistic quantum mechanics therefore provides the basic formalism for calculating the properties of heavy-atom systems. The purpose of this book is to provide a detailed description of the application of relativistic quantum mechanics to the many-body prob lem in the theoretical chemistry and physics of heavy and superheavy elements. Recent years have witnessed a continued and growing interest in relativistic quantum chemical methods and the associated computa tional algorithms which facilitate their application. This interest is fu elled by the need to develop robust, yet efficient theoretical approaches, together with efficient algorithms, which can be applied to atoms in the lower part of the Periodic Table and, more particularly, molecules and molecular entities containing such atoms. Such relativistic theories and computational algorithms are an essential ingredient for the description of heavy element chemistry, becoming even more important in the case of superheavy elements. They are destined to become an indispensable tool in the quantum chemist's armoury. Indeed, since relativity influences the structure of every atom in the Periodic Table, relativistic molecular structure methods may replace in many applications the non-relativistic techniques widely used in contemporary research.