Elements of the Representation Theory of the Jacobi Group


Book Description

Combining algebraic groups and number theory, this volume gathers material from the representation theory of this group for the first time, doing so for both local (Archimedean and non-Archimedean) cases as well as for the global number field case.




The Ubiquitous Heat Kernel


Book Description

The aim of this volume is to bring together research ideas from various fields of mathematics which utilize the heat kernel or heat kernel techniques in their research. The intention of this collection of papers is to broaden productive communication across mathematical sub-disciplines and to provide a vehicle which would allow experts in one field to initiate research with individuals in another field, as well as to give non-experts a resource which can facilitate expanding theirresearch and connecting with others.




Introduction to Representation Theory


Book Description

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.




Automorphic Forms and Zeta Functions


Book Description

This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works. This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions. Contents: Tsuneo Arakawa and His Works; Estimate of the Dimensions of Hilbert Modular Forms by Means of Differential Operator (H Aoki); Marsden-Weinstein Reduction, Orbits and Representations of the Jacobi Group (R Berndt); On Eisenstein Series of Degree Two for Squarefree Levels and the Genus Version of the Basis Problem I (S Bocherer); Double Zeta Values and Modular Forms (H Gangl et al.); Type Numbers and Linear Relations of Theta Series for Some General Orders of Quaternion Algebras (K Hashimoto); Skewholomorphic Jacobi Forms of Higher Degree (S Hayashida); A Hermitian Analog of the Schottky Form (M Hentschel & A Krieg); The Siegel Series and Spherical Functions on O(2n)/(O(n) x O(n)) (Y Hironaka & F Sati); Koecher-Maa Series for Real Analytic Siegel Eisenstein Series (T Ibukiyama & H Katsurada); A Short History on Investigation of the Special Values of Zeta and L-Functions of Totally Real Number Fields (T Ishii & T Oda); Genus Theta Series, Hecke Operators and the Basis Problem for Eisenstein Series (H Katsurada & R Schulze-Pillot); The Quadratic Mean of Automorphic L-Functions (W Kohnen et al.); Inner Product Formula for Kudla Lift (A Murase & T Sugano); On Certain Automorphic Forms of Sp(1,q) (Arakawa's Results and Recent Progress) (H Narita); On Modular Forms for the Paramodular Group (B Roberts & R Schmidt); SL(2,Z)-Invariant Spaces Spanned by Modular Units (N-P Skoruppa & W Eholzer). Readership: Researchers and graduate students in number theory or representation theory as well as in mathematical physics or combinatorics.




Automorphic Forms And Zeta Functions - Proceedings Of The Conference In Memory Of Tsuneo Arakawa


Book Description

This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works.This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions.




Representations of Linear Groups


Book Description

This is an elementary introduction to the representation theory of real and complex matrix groups. The text is written for students in mathematics and physics who have a good knowledge of differential/integral calculus and linear algebra and are familiar with basic facts from algebra, number theory and complex analysis. The goal is to present the fundamental concepts of representation theory, to describe the connection between them, and to explain some of their background. The focus is on groups which are of particular interest for applications in physics and number theory (e.g. Gell-Mann's eightfold way and theta functions, automorphic forms). The reader finds a large variety of examples which are presented in detail and from different points of view.




Number Theory and Applications


Book Description

This collection of articles contains the proceedings of the two international conferences (on Number Theory and Cryptography) held at the Harish - Chandra Research Institute. In recent years the interest in number theory has increased due to its applications in areas like error-correcting codes and cryptography. These proceedings contain papers in various areas of number theory, such as combinatorial, algebraic, analytic and transcendental aspects, arithmetic algebraic geometry, as well as graph theory and cryptography. While some papers do contain new results, several of the papers are expository articles that mention open questions, which will be useful to young researchers.




Geometric Methods in Physics


Book Description

The Białowieża workshops on Geometric Methods in Physics, taking place in the unique environment of the Białowieża natural forest in Poland, are among the important meetings in the field. Every year some 80 to 100 participants both from mathematics and physics join to discuss new developments and to interchange ideas. The current volume was produced on the occasion of the XXXI meeting in 2012. For the first time the workshop was followed by a School on Geometry and Physics, which consisted of advanced lectures for graduate students and young researchers. Selected speakers of the workshop were asked to contribute, and additional review articles were added. The selection shows that despite its now long tradition the workshop remains always at the cutting edge of ongoing research. The XXXI workshop had as a special topic the works of the late Boris Vasilievich Fedosov (1938–2011) who is best known for a simple and very natural construction of a deformation quantization for any symplectic manifold, and for his contributions to index theory.​




Markov Chains and Invariant Probabilities


Book Description

This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).




Mixed Automorphic Forms, Torus Bundles, and Jacobi Forms


Book Description

This volume deals with various topics around equivariant holomorphic maps of Hermitian symmetric domains and is intended for specialists in number theory and algebraic geometry. In particular, it contains a comprehensive exposition of mixed automorphic forms that has never yet appeared in book form. The main goal is to explore connections among complex torus bundles, mixed automorphic forms, and Jacobi forms associated to an equivariant holomorphic map. Both number-theoretic and algebro-geometric aspects of such connections and related topics are discussed.