Elements of the Theory of Generalized Inverses of Matrices


Book Description

The purpose of this monograph is to provide a concise introduction to the theory of generalized inverses of matrices that is accessible to undergraduate mathematics majors. Although results from this active area of research have appeared in a number of excellent graduate level text books since 1971, material for use at the undergraduate level remains fragmented. The basic ideas are so fundamental, however, that they can be used to unify various topics that an undergraduate has seen but perhaps not related. Material in this monograph was first assembled by the author as lecture notes for the senior seminar in mathematics at the University of Tennessee. In this seminar one meeting per week was for a lecture on the subject matter, and another meeting was to permit students to present solutions to exercises. Two major problems were encountered the first quarter the seminar was given. These were that some of the students had had only the required one-quarter course in matrix theory and were not sufficiently familiar with eigenvalues, eigenvectors and related concepts, and that many -v- of the exercises required fortitude. At the suggestion of the UMAP Editor, the approach in the present monograph is (1) to develop the material in terms of full rank factoriza tions and to relegate all discussions using eigenvalues and eigenvectors to exercises, and (2) to include an appendix of hints for exercises.




Theory of Generalized Inverses Over Commutative Rings


Book Description

The theory of generalized inverses of real or complex matrices has been expertly developed and documented. But the generalized inverses of matrices over rings have received comprehensive treatment only recently. In this book, the author, who contributed to the research and development of the theory, explains his results. He explores regular element




Generalized Inverses of Linear Transformations


Book Description

Provides comprehensive coverage of the mathematical theory of generalized inverses and a wide range of important and practical applications.




Matrix Theory


Book Description

In 1990, the National Science Foundation recommended that every college mathematics curriculum should include a second course in linear algebra. In answer to this recommendation, Matrix Theory: From Generalized Inverses to Jordan Form provides the material for a second semester of linear algebra that probes introductory linear algebra concepts while also exploring topics not typically covered in a sophomore-level class. Tailoring the material to advanced undergraduate and beginning graduate students, the authors offer instructors flexibility in choosing topics from the book. The text first focuses on the central problem of linear algebra: solving systems of linear equations. It then discusses LU factorization, derives Sylvester's rank formula, introduces full-rank factorization, and describes generalized inverses. After discussions on norms, QR factorization, and orthogonality, the authors prove the important spectral theorem. They also highlight the primary decomposition theorem, Schur's triangularization theorem, singular value decomposition, and the Jordan canonical form theorem. The book concludes with a chapter on multilinear algebra. With this classroom-tested text students can delve into elementary linear algebra ideas at a deeper level and prepare for further study in matrix theory and abstract algebra.




Generalized Inverses


Book Description

This second edition accounts for many major developments in generalized inverses while maintaining the informal and leisurely style of the 1974 first edition. Added material includes a chapter on applications, new exercises, and an appendix on the work of E.H. Moore.




Generalized Inverses and Applications


Book Description

Generalized Inverses and Applications, contains the proceedings of an Advanced Seminar on Generalized Inverses and Applications held at the University of Wisconsin-Madison on October 8-10, 1973 under the auspices of the university's Mathematics Research Center. The seminar provided a forum for discussing the basic theory of generalized inverses and their applications to analysis and operator equations. Numerical analysis and approximation methods are considered, along with applications to statistics and econometrics, optimization, system theory, and operations research. Comprised of 14 chapters, this book begins by describing a unified approach to generalized inverses of linear operators, with particular reference to algebraic, topological, extremal, and proximinal properties. The reader is then introduced to the algebraic aspects of the generalized inverse of a rectangular matrix; the Fredholm pseudoinverse; and perturbations and approximations for generalized inverses and linear operator equations. Subsequent chapters deal with various applications of generalized inverses, including programming, games, and networks, as well as estimation and aggregation in econometrics. This monograph will be of interest to mathematicians and students of mathematics.




Combinatorial Matrix Theory and Generalized Inverses of Matrices


Book Description

This book consists of eighteen articles in the area of `Combinatorial Matrix Theory' and `Generalized Inverses of Matrices'. Original research and expository articles presented in this publication are written by leading Mathematicians and Statisticians working in these areas. The articles contained herein are on the following general topics: `matrices in graph theory', `generalized inverses of matrices', `matrix methods in statistics' and `magic squares'. In the area of matrices and graphs, speci_c topics addressed in this volume include energy of graphs, q-analog, immanants of matrices and graph realization of product of adjacency matrices. Topics in the book from `Matrix Methods in Statistics' are, for example, the analysis of BLUE via eigenvalues of covariance matrix, copulas, error orthogonal model, and orthogonal projectors in the linear regression models. Moore-Penrose inverse of perturbed operators, reverse order law in the case of inde_nite inner product space, approximation numbers, condition numbers, idempotent matrices, semiring of nonnegative matrices, regular matrices over incline and partial order of matrices are the topics addressed under the area of theory of generalized inverses. In addition to the above traditional topics and a report on CMTGIM 2012 as an appendix, we have an article on old magic squares from India.




Lectures on Matrices


Book Description

It is the organization and presentation of the material, however, which make the peculiar appeal of the book. This is no mere compendium of results--the subject has been completely reworked and the proofs recast with the skill and elegance which come only from years of devotion. --Bulletin of the American Mathematical Society The very clear and simple presentation gives the reader easy access to the more difficult parts of the theory. --Jahrbuch uber die Fortschritte der Mathematik In 1937, the theory of matrices was seventy-five years old. However, many results had only recently evolved from special cases to true general theorems. With the publication of his Colloquium Lectures, Wedderburn provided one of the first great syntheses of the subject. Much of the material in the early chapters is now familiar from textbooks on linear algebra. Wedderburn discusses topics such as vectors, bases, adjoints, eigenvalues and the characteristic polynomials, up to and including the properties of Hermitian and orthogonal matrices. Later chapters bring in special results on commuting families of matrices, functions of matrices--including elements of the differential and integral calculus sometimes known as matrix analysis, and transformations of bilinear forms. The final chapter treats associative algebras, culminating with the well-known Wedderburn-Artin theorem that simple algebras are necessarily isomorphic to matrix algebras. Wedderburn ends with an appendix of historical notes on the development of the theory of matrices, and a bibliography that emphasizes the history of the subject.




Generalized Inverse of Matrices and Its Applications


Book Description

Notations and preliminaries; Generalized inverse of a matrix; Three basic types of g-inverses; Other special types of g-inverse; Projectors, idempotent matrices and partial isometry; Simulatneous reduction of a pair of herminitian forms; Estimation of parameters in linear models; Conditions for optimality and validity of least-squares theory; Distribution of quadratic forms; Miscellaneous applications of g-inverses; Computational methods; Bibliography on generalized inverses and applications; Index.




TEXTBOOK OF MATRIX ALGEBRA


Book Description

Intended as a text for postgraduate and undergraduate honours students of Statistics, Mathematics, Operations Research as well as students in various branches of Engineering, this student-friendly book gives an indepth analysis of Matrix Algebra and all the major topics related to it. Divided into 12 chapters, the book begins with a discussion on Elements of Matrix Theory and Some Special Matrices. Then it goes on to give a detailed discussion on Scalar Function and Inverse of a Matrix, Rank of a Matrix, Generalized Inverse of a Matrix, and Quadric Forms and Inequalities. The book concludes by giving Some Applications of Algebra of Matrices, Matrices in the Infinite Dimensional Vector Space, and Computational Tracts in Matrices. KEY FEATURES Gives a large number of both solved and unsolved problems of Elementary Matrix. Provides an exhaustive treatment of Generalized Inverse Matrix with many applications in Statistics. Devotes one chapter exclusively to application of Matrices. Provides one full chapter on Matrices in the Infinite Dimensional Vector Space, which will be quite useful for postgraduate students. Gives an Appendix on R Software which will be extremely useful for students of Statistics. Provides Question Bank which will greatly benefit both undergraduate and postgraduate students. This book, which beautifully blends both theory and applications of Matrix Algebra, should prove to be an invaluable text for the students.