Elements of Vibration Analysis


Book Description

This book provides contemporary coverage of the primary concepts and techniques in vibration analysis. More elementary material has been added to the first four chapters of this second edition-making for an updated and expanded introduction to vibration analysis. The remaining eight chapters present material of increasing complexity, and problems are found at the end/of each chapter.




Vibration Theory and Applications with Finite Elements and Active Vibration Control


Book Description

Based on many years of research and teaching, this book brings together all the important topics in linear vibration theory, including failure models, kinematics and modeling, unstable vibrating systems, rotordynamics, model reduction methods, and finite element methods utilizing truss, beam, membrane and solid elements. It also explores in detail active vibration control, instability and modal analysis. The book provides the modeling skills and knowledge required for modern engineering practice, plus the tools needed to identify, formulate and solve engineering problems effectively.




Elements of Mechanical Vibration


Book Description

This is an entry level textbook to the subject of vibration of linear mechanical systems. All the topics prescribed by leading universities for study in undergraduate engineering courses are covered in the book in a graded manner. With minimum amount of m




Vibration of Continuous Systems


Book Description

A revised and up-to-date guide to advanced vibration analysis written by a noted expert The revised and updated second edition of Vibration of Continuous Systems offers a guide to all aspects of vibration of continuous systems including: derivation of equations of motion, exact and approximate solutions and computational aspects. The author—a noted expert in the field—reviews all possible types of continuous structural members and systems including strings, shafts, beams, membranes, plates, shells, three-dimensional bodies, and composite structural members. Designed to be a useful aid in the understanding of the vibration of continuous systems, the book contains exact analytical solutions, approximate analytical solutions, and numerical solutions. All the methods are presented in clear and simple terms and the second edition offers a more detailed explanation of the fundamentals and basic concepts. Vibration of Continuous Systems revised second edition: Contains new chapters on Vibration of three-dimensional solid bodies; Vibration of composite structures; and Numerical solution using the finite element method Reviews the fundamental concepts in clear and concise language Includes newly formatted content that is streamlined for effectiveness Offers many new illustrative examples and problems Presents answers to selected problems Written for professors, students of mechanics of vibration courses, and researchers, the revised second edition of Vibration of Continuous Systems offers an authoritative guide filled with illustrative examples of the theory, computational details, and applications of vibration of continuous systems.




Fundamentals of Vibration Analysis


Book Description

This concise textbook discusses vibration problems in engineering, dealing with systems of one and more than one degrees of freedom. A substantial section of Answers to Problems is included. 1956 edition.




Vibration Elements


Book Description

Why Vibration Elements? No matter how smart IIoT and predictive analytics gets ¿ no matter how good the tier 1 hand-held instruments get ¿ people can benefit from the logic and thought process behind the physics of vibration analysis and what conditions the technology can determine and detect.The Vibration Elements were created to provide both beginners and experienced analysts a logical, visual mapping system to understand vibration analysis as "systems thinking."




Mechanical Vibrations and Condition Monitoring


Book Description

Mechanical Vibrations and Condition Monitoring presents a collection of data and insights on the study of mechanical vibrations for the predictive maintenance of machinery. Seven chapters cover the foundations of mechanical vibrations, spectrum analysis, instruments, causes and effects of vibration, alignment and balancing methods, practical cases, and guidelines for the implementation of a predictive maintenance program. Readers will be able to use the book to make predictive maintenance decisions based on vibration analysis. This title will be useful to senior engineers and technicians looking for practical solutions to predictive maintenance problems. However, the book will also be useful to technicians looking to ground maintenance observations and decisions in the vibratory behavior of machine components.




Matrix Computer Methods of Vibration Analysis


Book Description

Matrix Computer Methods of Vibration Analysis is an eight-chapter introductory text to a particular technique that combines vibration analysis, matrix algebra, and computational methods. This book is emerged from a series of lectures presented at the North-East London Polytechnic. Chapters 1 and 2 introduce the basic concepts of matrix algebra, followed by a discussion on the facilities and methods of use of the computer in Chapter 3. Chapter 4 deals with the synthesis and manipulation of the system matrix for a vibrating system consisting of a number of lumped parameters, each of these being either a point mass or a massless spring. Chapter 5 describes the concept of separate matrices for the stiffnesses and masses of beams or shafts, while Chapter 6 evaluate the systems subjected to forced vibration due to varying frequencies of excitation and damping. Chapters 7 considers the different types of element that can be encountered in the analysis of a shaft or beam for natural frequencies, with an emphasis on the algorithm for dealing with massless shaft elements and point masses. Chapter 8 covers the analysis and computational requirements of torsional vibration. This work is an invaluable source for mathematicians and computer programmers and researchers.




Vibration Analysis and Structural Dynamics for Civil Engineers


Book Description

Appeals to the Student and the Seasoned Professional While the analysis of a civil-engineering structure typically seeks to quantify static effects (stresses and strains), there are some aspects that require considerations of vibration and dynamic behavior. Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations is relevant to instances that involve significant time-varying effects, including impact and sudden movement. It explains the basic theory to undergraduate and graduate students taking courses on vibration and dynamics, and also presents an original approach for the vibration analysis of symmetric systems, for both researchers and practicing engineers. Divided into two parts, it first covers the fundamentals of the vibration of engineering systems, and later addresses how symmetry affects vibration behavior. Part I treats the modeling of discrete single and multi-degree-of-freedom systems, as well as mathematical formulations for continuous systems, both analytical and numerical. It also features some worked examples and tutorial problems. Part II introduces the mathematical concepts of group theory and symmetry groups, and applies these to the vibration of a diverse range of problems in structural mechanics. It reveals the computational benefits of the group-theoretic approach, and sheds new insights on complex vibration phenomena. The book consists of 11 chapters with topics that include: The vibration of discrete systems or lumped parameter models The free and forced response of single degree-of-freedom systems The vibration of systems with multiple degrees of freedom The vibration of continuous systems (strings, rods and beams) The essentials of finite-element vibration modelling Symmetry considerations and an outline of group and representation theories Applications of group theory to the vibration of linear mechanical systems Applications of group theory to the vibration of structural grids and cable nets Group-theoretic finite-element and finite-difference formulations Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations acquaints students with the fundamentals of vibration theory, informs experienced structural practitioners on simple and effective techniques for vibration modelling, and provides researchers with new directions for the development of computational vibration procedures.




Fundamentals of Noise and Vibration Analysis for Engineers


Book Description

Noise and Vibration affects all kinds of engineering structures, and is fast becoming an integral part of engineering courses at universities and colleges around the world. In this second edition, Michael Norton's classic text has been extensively updated to take into account recent developments in the field. Much of the new material has been provided by Denis Karczub, who joins Michael as second author for this edition. This book treats both noise and vibration in a single volume, with particular emphasis on wave-mode duality and interactions between sound waves and solid structures. There are numerous case studies, test cases, and examples for students to work through. The book is primarily intended as a textbook for senior level undergraduate and graduate courses, but is also a valuable reference for researchers and professionals looking to gain an overview of the field.