Elliptic Marching Methods and Domain Decomposition


Book Description

One of the first things a student of partial differential equations learns is that it is impossible to solve elliptic equations by spatial marching. This new book describes how to do exactly that, providing a powerful tool for solving problems in fluid dynamics, heat transfer, electrostatics, and other fields characterized by discretized partial differential equations. Elliptic Marching Methods and Domain Decomposition demonstrates how to handle numerical instabilities (i.e., limitations on the size of the problem) that appear when one tries to solve these discretized equations with marching methods. The book also shows how marching methods can be superior to multigrid and pre-conditioned conjugate gradient (PCG) methods, particularly when used in the context of multiprocessor parallel computers. Techniques for using domain decomposition together with marching methods are detailed, clearly illustrating the benefits of these techniques for applications in engineering, applied mathematics, and the physical sciences.




Oil Spill Risk Management


Book Description

This book is designed to help scientifically astute non-specialists understand basic geophysical and computational fluid dynamics concepts relating to oil spill simulations, and related modeling issues and challenges. A valuable asset to the engineer or manager working off-shore in the oil and gas industry, the authors, a team of renowned geologists and engineers, offer practical applications to mitigate any offshore spill risks, using research never before published.




Parallelism in Matrix Computations


Book Description

This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike. The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness.




Error Control and Adaptivity in Scientific Computing


Book Description

One of the main ways by which we can understand complex processes is to create computerised numerical simulation models of them. Modern simulation tools are not used only by experts, however, and reliability has therefore become an important issue, meaning that it is not sufficient for a simulation package merely to print out some numbers, claiming them to be the desired results. An estimate of the associated error is also needed. The errors may derive from many sources: errors in the model, errors in discretization, rounding errors, etc. Unfortunately, this situation does not obtain for current packages and there is a great deal of room for improvement. Only if the error can be estimated is it possible to do something to reduce it. The contributions in this book cover many aspects of the subject, the main topics being error estimates and error control in numerical linear algebra algorithms (closely related to the concept of condition numbers), interval arithmetic and adaptivity for continuous models.




Domain Decomposition Methods in Science and Engineering XXII


Book Description

These are the proceedings of the 22nd International Conference on Domain Decomposition Methods, which was held in Lugano, Switzerland. With 172 participants from over 24 countries, this conference continued a long-standing tradition of internationally oriented meetings on Domain Decomposition Methods. The book features a well-balanced mix of established and new topics, such as the manifold theory of Schwarz Methods, Isogeometric Analysis, Discontinuous Galerkin Methods, exploitation of modern HPC architectures and industrial applications. As the conference program reflects, the growing capabilities in terms of theory and available hardware allow increasingly complex non-linear and multi-physics simulations, confirming the tremendous potential and flexibility of the domain decomposition concept.




Conservative Finite-Difference Methods on General Grids


Book Description

This new book deals with the construction of finite-difference (FD) algorithms for three main types of equations: elliptic equations, heat equations, and gas dynamic equations in Lagrangian form. These methods can be applied to domains of arbitrary shapes. The construction of FD algorithms for all types of equations is done on the basis of the support-operators method (SOM). This method constructs the FD analogs of main invariant differential operators of first order such as the divergence, the gradient, and the curl. This book is unique because it is the first book not in Russian to present the support-operators ideas. Conservative Finite-Difference Methods on General Grids is completely self-contained, presenting all the background material necessary for understanding. The book provides the tools needed by scientists and engineers to solve a wide range of practical engineering problems. An abundance of tables and graphs support and explain methods. The book details all algorithms needed for implementation. A 3.5" IBM compatible computer diskette with the main algorithms in FORTRAN accompanies text for easy use.




Encyclopedia of Parallel Computing


Book Description

Containing over 300 entries in an A-Z format, the Encyclopedia of Parallel Computing provides easy, intuitive access to relevant information for professionals and researchers seeking access to any aspect within the broad field of parallel computing. Topics for this comprehensive reference were selected, written, and peer-reviewed by an international pool of distinguished researchers in the field. The Encyclopedia is broad in scope, covering machine organization, programming languages, algorithms, and applications. Within each area, concepts, designs, and specific implementations are presented. The highly-structured essays in this work comprise synonyms, a definition and discussion of the topic, bibliographies, and links to related literature. Extensive cross-references to other entries within the Encyclopedia support efficient, user-friendly searchers for immediate access to useful information. Key concepts presented in the Encyclopedia of Parallel Computing include; laws and metrics; specific numerical and non-numerical algorithms; asynchronous algorithms; libraries of subroutines; benchmark suites; applications; sequential consistency and cache coherency; machine classes such as clusters, shared-memory multiprocessors, special-purpose machines and dataflow machines; specific machines such as Cray supercomputers, IBM’s cell processor and Intel’s multicore machines; race detection and auto parallelization; parallel programming languages, synchronization primitives, collective operations, message passing libraries, checkpointing, and operating systems. Topics covered: Speedup, Efficiency, Isoefficiency, Redundancy, Amdahls law, Computer Architecture Concepts, Parallel Machine Designs, Benmarks, Parallel Programming concepts & design, Algorithms, Parallel applications. This authoritative reference will be published in two formats: print and online. The online edition features hyperlinks to cross-references and to additional significant research. Related Subjects: supercomputing, high-performance computing, distributed computing




Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations


Book Description

Domain decomposition methods are divide and conquer computational methods for the parallel solution of partial differential equations of elliptic or parabolic type. The methodology includes iterative algorithms, and techniques for non-matching grid discretizations and heterogeneous approximations. This book serves as a matrix oriented introduction to domain decomposition methodology. A wide range of topics are discussed include hybrid formulations, Schwarz, and many more.




Numerical Solutions for Partial Differential Equations


Book Description

Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.




Mathematical Reviews


Book Description