Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48)


Book Description

This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.




Spectral Theory, Function Spaces and Inequalities


Book Description

This is a collection of contributed papers which focus on recent results in areas of differential equations, function spaces, operator theory and interpolation theory. In particular, it covers current work on measures of non-compactness and real interpolation, sharp Hardy-Littlewood-Sobolev inequalites, the HELP inequality, error estimates and spectral theory of elliptic operators, pseudo differential operators with discontinuous symbols, variable exponent spaces and entropy numbers. These papers contribute to areas of analysis which have been and continue to be heavily influenced by the leading British analysts David Edmunds and Des Evans. This book marks their respective 80th and 70th birthdays.




Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane


Book Description

This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.




Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48)


Book Description

This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.




Mathematical Reviews


Book Description




A Primer on Mapping Class Groups


Book Description

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.




Moduli Spaces of Riemann Surfaces


Book Description

Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.




Generalized Analytic Functions


Book Description

Generalized Analytic Functions is concerned with foundations of the general theory of generalized analytic functions and some applications to problems of differential geometry and theory of shells. Some classes of functions and operators are discussed, along with the reduction of a positive differential quadratic form to the canonical form. Boundary value problems and infinitesimal bendings of surfaces are also considered. Comprised of six chapters, this volume begins with a detailed treatment of various problems of the general theory of generalized analytic functions as as well as boundary value problems. The reader is introduced to some classes of functions and functional spaces, with emphasis on functions of two independent variables. Subsequent chapters focus on the problem of reducing a positive differential quadratic form to the canonical form; basic properties of solutions of elliptic systems of partial differential equations of the first order, in a two-dimensional domain; and some boundary value problems for an elliptic system of equations of the first order and for an elliptic equation of the second order, in a two-dimensional domain. The final part of the book deals with problems of the theory of surfaces and the membrane theory of shells. This book is intended for students of advanced courses of the mechanico-mathematical faculties, postgraduates, and research workers.




The Kernel Function and Conformal Mapping


Book Description

The Kernel Function and Conformal Mapping by Stefan Bergman is a revised edition of ""The Kernel Function"". The author has made extensive changes in the original volume. The present book will be of interest not only to mathematicians, but also to engineers, physicists, and computer scientists. The applications of orthogonal functions in solving boundary value problems and conformal mappings onto canonical domains are discussed; and publications are indicated where programs for carrying out numerical work using high-speed computers can be found.The unification of methods in the theory of functions of one and several complex variables is one of the purposes of introducing the kernel function and the domains with a distinguished boundary. This approach has been extensively developed during the last two decades. This second edition of Professor Bergman's book reviews this branch of the theory including recent developments not dealt with in the first edition. The presentation of the topics is simple and presupposes only knowledge of an elementary course in the theory of analytic functions of one variable.




Quasiconformal Mappings and Analysis


Book Description

In honor of Frederick W. Gehring on the occasion of his 70th birthday, an international conference on ""Quasiconformal mappings and analysis"" was held in Ann Arbor in August 1995. The 9 main speakers of the conference (Astala, Earle, Jones, Kra, Lehto, Martin, Pommerenke, Sullivan, and Vaisala) provide broad expository articles on various aspects of quasiconformal mappings and their relations to other areas of analysis. 12 other distinguished mathematicians contribute articles to this volume.