Embedded Mechatronic Systems 2


Book Description

Embedded Mechatronic Systems 2: Analysis of Failures, Modeling, Simulation and Optimization presents advances in research within the field of mechatronic systems, which integrates reliability into the design process. Providing many detailed examples, this book develops a characterization methodology for faults in mechatronic systems. It analyzes the multi-physical modeling of faults, revealing weaknesses in design and failure mechanisms. This development of meta-models enables us to simulate effects on the reliability of conditions of use and manufacture. Provides many detailed examples Develops a characterization methodology for faults in mechatronic systems Analyzes the multi-physical modeling of faults, revealing weaknesses in design and failure mechanisms




Embedded Mechatronic Systems


Book Description

Mechatronics brings together computer science, mechanics and electronics. It enables us to improve the performances of embedded electronic systems by reducing their weight, volume, energy consumption and cost. Mechatronic equipment must operate without failure throughout ever-increasing service lives. The particularly severe conditions of use of embedded mechatronics cause failure mechanisms which are the source of breakdowns. Until now, these failure phenomena have not been looked at with enough depth to be able to be controlled. Embedded Mechatronic Systems 1, Second Edition presents two methodologies: the statistical approach to the design optimization by reliability and the experimental approach for the characterization of the development of mechatronic systems in operating mode. It also analyzes new analysis tools on the effects of thermal, vibratory, humidity, electric and electromagnetic stresses. Presents a statistical approach to the design optimization by reliability It presents an experimental approach for the characterization of the development of mechatronic systems in operating mode The book analyzes new analysis tools on the effects of thermal, vibratory, humidity, electric and electromagnetic stresses




Embedded Mechatronic Systems, Volume 2


Book Description

In operation, mechatronics embedded systems are stressed by loads of different causes: climate (temperature, humidity), vibration, electrical and electromagnetic. These stresses in components induce failure mechanisms should be identified and modeled for better control. AUDACE is a collaborative project of the cluster Mov'eo that address issues specific to mechatronic reliability embedded systems. AUDACE means analyzing the causes of failure of components of mechatronic systems onboard. The goal of the project is to optimize the design of mechatronic devices by reliability. The project brings together public sector laboratories that have expertise in analysis and modeling of failure, major groups of mechatronics (Valeo and Thales) in the automotive and aerospace and small and medium enterprises that have skills in characterization and validation tests.




Embedded Mechatronics System Design for Uncertain Environments


Book Description

Industrial machines, automobiles, airplanes, robots, and machines are among the myriad possible hosts of embedded systems. The author researches robotic vehicles and remote operated vehicles (ROVs), especially Underwater Robotic Vehicles (URVs), used for a wide range of applications such as exploring oceans, monitoring environments, and supporting operations in extreme environments.




Embedded Computing and Mechatronics with the PIC32 Microcontroller


Book Description

For the first time in a single reference, this book provides the beginner with a coherent and logical introduction to the hardware and software of the PIC32, bringing together key material from the PIC32 Reference Manual, Data Sheets, XC32 C Compiler User's Guide, Assembler and Linker Guide, MIPS32 CPU manuals, and Harmony documentation. This book also trains you to use the Microchip documentation, allowing better life-long learning of the PIC32. The philosophy is to get you started quickly, but to emphasize fundamentals and to eliminate "magic steps" that prevent a deep understanding of how the software you write connects to the hardware. Applications focus on mechatronics: microcontroller-controlled electromechanical systems incorporating sensors and actuators. To support a learn-by-doing approach, you can follow the examples throughout the book using the sample code and your PIC32 development board. The exercises at the end of each chapter help you put your new skills to practice. Coverage includes: A practical introduction to the C programming language Getting up and running quickly with the PIC32 An exploration of the hardware architecture of the PIC32 and differences among PIC32 families Fundamentals of embedded computing with the PIC32, including the build process, time- and memory-efficient programming, and interrupts A peripheral reference, with extensive sample code covering digital input and output, counter/timers, PWM, analog input, input capture, watchdog timer, and communication by the parallel master port, SPI, I2C, CAN, USB, and UART An introduction to the Microchip Harmony programming framework Essential topics in mechatronics, including interfacing sensors to the PIC32, digital signal processing, theory of operation and control of brushed DC motors, motor sizing and gearing, and other actuators such as stepper motors, RC servos, and brushless DC motors For more information on the book, and to download free sample code, please visit http://www.nu32.org Extensive, freely downloadable sample code for the NU32 development board incorporating the PIC32MX795F512H microcontroller Free online instructional videos to support many of the chapters




Embedded Mechatronic Systems, Volume 2


Book Description

In operation, mechatronics embedded systems are stressed by loads of different causes: climate (temperature, humidity), vibration, electrical and electromagnetic. These stresses in components induce failure mechanisms should be identified and modeled for better control. AUDACE is a collaborative project of the cluster Mov'eo that address issues specific to mechatronic reliability embedded systems. AUDACE means analyzing the causes of failure of components of mechatronic systems onboard. The goal of the project is to optimize the design of mechatronic devices by reliability. The project brings together public sector laboratories that have expertise in analysis and modeling of failure, major groups of mechatronics (Valeo and Thales) in the automotive and aerospace and small and medium enterprises that have skills in characterization and validation tests. - Find and develop ways to characterize and validate the design robustness and reliability of complex mechatronic devices - Develop ways to characterize physical and chemical phenomena, - Identify mechanisms of failure of components of these devices, - Analyze the physical and / or chemical mechanisms of failure, in order of importance - To model failure mechanisms and design optimization.




The Mechatronics Handbook - 2 Volume Set


Book Description

The first comprehensive reference on mechatronics, The Mechatronics Handbook was quickly embraced as the gold standard in the field. From washing machines, to coffeemakers, to cell phones, to the ubiquitous PC in almost every household, what, these days, doesn’t take advantage of mechatronics in its design and function? In the scant five years since the initial publication of the handbook, the latest generation of smart products has made this even more obvious. Too much material to cover in a single volume Originally a single-volume reference, the handbook has grown along with the field. The need for easy access to new material on rapid changes in technology, especially in computers and software, has made the single volume format unwieldy. The second edition is offered as two easily digestible books, making the material not only more accessible, but also more focused. Completely revised and updated, Robert Bishop’s seminal work is still the most exhaustive, state-of-the-art treatment of the field available.




Distributed Embedded Control Systems


Book Description

This fascinating new work comes complete with more than 100 illustrations and a detailed practical prototype. It explores the domains encountered when designing a distributed embedded computer control system as an integrated whole. Basic issues about real-time systems and their properties, especially safety, are examined first. Then, system and hardware architectures are dealt with, along with programming issues, embodying desired properties, basic language subsets, object orientation and language support for hardware and software specifications.




Graph Transformations and Model-Driven Engineering


Book Description

This festschrift volume, published in honor of Manfred Nagl on the occasion of his 65th birthday, contains 30 refereed contributions, that cover graph transformations, software architectures and reengineering, embedded systems engineering, and more.




Computer Aided and Integrated Manufacturing Systems: Computer aided design


Book Description

This is an invaluable five-volume reference on the very broad and highly significant subject of computer aided and integrated manufacturing systems. It is a set of distinctly titled and well-harmonized volumes by leading experts on the international scene.The techniques and technologies used in computer aided and integrated manufacturing systems have produced, and will no doubt continue to produce, major annual improvements in productivity, which is defined as the goods and services produced from each hour of work. This publication deals particularly with more effective utilization of labor and capital, especially information technology systems. Together the five volumes treat comprehensively the major techniques and technologies that are involved.