ICE Specification for Piling and Embedded Retaining Walls


Book Description

This edition retains the three-part approach of the second edition. Part A is an introduction to the essential concepts necessary to procure a piling or retaining wall contract. Part B is the specification and is still the only part of this document intended for incorporation in contracts. Part C provides guidance for use of the specification and essential background information for specifiers and contractors alike. Unlike the second edition, Part 3 guidance notes immediately follow the relevant Part 2 specification requirements. The three sections provide the reader with a full compendium without being overly prescriptive.




Embedded Retaining Walls


Book Description

This publication replaces the CIRIA report from 1984, R104 Design of retaining walls embedded in stiff clays. It provides best practice guidance on the selection and design of vertical embedded retaining walls.







The Long Term Performance of Embedded Retaining Walls


Book Description

Much of the urban development in the UK is founded on heavily overconsolidated sedimentary clays, which are particularly susceptible to swelling and softening following the reduction in stress caused by retaining wall construction. Moreover, the low permeability of these clays means the swelling and softening is likely to extend over many years or decades following completion of construction. For these reasons, design of embedded walls for long term stability may be critical. This report describes the results from continued monitoring over many years of various embedded retaining structures instrumented by TRL. The types of structure fall into two categories. Firstly, the report covers walls instrumented during construction where monitoring has been continued in the longer term. Secondly, it covers walls constructed between 1972 and 1975 and instrumented whilst in service to evaluate their long term behaviour.




Specification for Piling and Embedded Retaining Walls


Book Description

The ICE Specifications for Piling, published in 1988 provided a standard document for the range of different piling construction techniques commonly used in the UK. Here, this specification includes significant changes, and covers embedded retaining walls.




Harmony Search Algorithm


Book Description

The Harmony Search Algorithm (HSA) is one of the most well-known techniques in the field of soft computing, an important paradigm in the science and engineering community. This volume, the proceedings of the 2nd International Conference on Harmony Search Algorithm 2015 (ICHSA 2015), brings together contributions describing the latest developments in the field of soft computing with a special focus on HSA techniques. It includes coverage of new methods that have potentially immense application in various fields. Contributed articles cover aspects of the following topics related to the Harmony Search Algorithm: analytical studies; improved, hybrid and multi-objective variants; parameter tuning; and large-scale applications. The book also contains papers discussing recent advances on the following topics: genetic algorithms; evolutionary strategies; the firefly algorithm and cuckoo search; particle swarm optimization and ant colony optimization; simulated annealing; and local search techniques. This book offers a valuable snapshot of the current status of the Harmony Search Algorithm and related techniques, and will be a useful reference for practising researchers and advanced students in computer science and engineering.




The Essential Guide to the ICE Specification for Piling and Embedded Retaining Walls


Book Description

First published in 1996, this updated guide provides practical advice on the use of ICE (Institute of Civil Engineers) specifications and includes a detailed commentary on each section with references to specific clauses. (Technology & Industrial Arts)




FLAC and Numerical Modeling in Geomechanics


Book Description

Sixty-five papers cover a wide range of topics from engineering applications to theoretical developments in the areas of embankment and slope stability, underground cavity design and mining; dynamic analysis, soil and structure interaction, and coupled processes and fluid flow.




Geotechnics for Sustainable Infrastructure Development


Book Description

This book presents 09 keynote and invited lectures and 177 technical papers from the 4th International Conference on Geotechnics for Sustainable Infrastructure Development, held on 28-29 Nov 2019 in Hanoi, Vietnam. The papers come from 35 countries of the five different continents, and are grouped in six conference themes: 1) Deep Foundations; 2) Tunnelling and Underground Spaces; 3) Ground Improvement; 4) Landslide and Erosion; 5) Geotechnical Modelling and Monitoring; and 6) Coastal Foundation Engineering. The keynote lectures are devoted by Prof. Harry Poulos (Australia), Prof. Adam Bezuijen (Belgium), Prof. Delwyn Fredlund (Canada), Prof. Lidija Zdravkovic (UK), Prof. Masaki Kitazume (Japan), and Prof. Mark Randolph (Australia). Four invited lectures are given by Prof. Charles Ng, ISSMGE President, Prof.Eun Chul Shin, ISSMGE Vice-President for Asia, Prof. Norikazu Shimizu (Japan), and Dr.Kenji Mori (Japan).




Geosynthetic Reinforced Soil (GRS) Walls


Book Description

The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.