Wearable Robots


Book Description

A wearable robot is a mechatronic system that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. Teleoperation and power amplification were the first applications, but after recent technological advances the range of application fields has widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control. Logical in structure and original in its global orientation, this volume gives a full overview of wearable robotics, providing the reader with a complete understanding of the key applications and technologies suitable for its development. The main topics are demonstrated through two detailed case studies; one on a lower limb active orthosis for a human leg, and one on a wearable robot that suppresses upper limb tremor. These examples highlight the difficulties and potentialities in this area of technology, illustrating how design decisions should be made based on these. As well as discussing the cognitive interaction between human and robot, this comprehensive text also covers: the mechanics of the wearable robot and it’s biomechanical interaction with the user, including state-of-the-art technologies that enable sensory and motor interaction between human (biological) and wearable artificial (mechatronic) systems; the basis for bioinspiration and biomimetism, general rules for the development of biologically-inspired designs, and how these could serve recursively as biological models to explain biological systems; the study on the development of networks for wearable robotics. Wearable Robotics: Biomechatronic Exoskeletons will appeal to lecturers, senior undergraduate students, postgraduates and other researchers of medical, electrical and bio engineering who are interested in the area of assistive robotics. Active system developers in this sector of the engineering industry will also find it an informative and welcome resource.




The Future of Humanoid Robots


Book Description

This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R




ROMANSY 21 - Robot Design, Dynamics and Control


Book Description

This proceedings volume contains papers that have been selected after review for oral presentation at ROMANSY 2016, the 21th CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators. These papers cover advances on several aspects of the wide field of Robotics as concerning Theory and Practice of Robots and Manipulators. ROMANSY 2016 is the 21st event in a series that started in 1973 as one of the first conference activities in the world on Robotics. The first event was held at CISM (International Centre for Mechanical Science) in Udine, Italy on 5-8 September 1973. It was also the first topic conference of IFToMM (International Federation for the Promotion of Mechanism and Machine Science) and it was directed not only to the IFToMM community.




Autonomous Horizons


Book Description

Dr. Greg Zacharias, former Chief Scientist of the United States Air Force (2015-18), explores next steps in autonomous systems (AS) development, fielding, and training. Rapid advances in AS development and artificial intelligence (AI) research will change how we think about machines, whether they are individual vehicle platforms or networked enterprises. The payoff will be considerable, affording the US military significant protection for aviators, greater effectiveness in employment, and unlimited opportunities for novel and disruptive concepts of operations. Autonomous Horizons: The Way Forward identifies issues and makes recommendations for the Air Force to take full advantage of this transformational technology.




Programming Robots with ROS


Book Description

Chapter 3. Topics; Publishing to a Topic; Checking That Everything Works as Expected; Subscribing to a Topic; Checking That Everything Works as Expected; Latched Topics; Defining Your Own Message Types; Defining a New Message; Using Your New Message; When Should You Make a New Message Type?; Mixing Publishers and Subscribers; Summary; Chapter 4. Services; Defining a Service; Implementing a Service; Checking That Everything Works as Expected; Other Ways of Returning Values from a Service; Using a Service; Checking That Everything Works as Expected; Other Ways to Call Services; Summary.




Aerial Manipulation


Book Description

This text is a thorough treatment of the rapidly growing area of aerial manipulation. It details all the design steps required for the modeling and control of unmanned aerial vehicles (UAV) equipped with robotic manipulators. Starting with the physical basics of rigid-body kinematics, the book gives an in-depth presentation of local and global coordinates, together with the representation of orientation and motion in fixed- and moving-coordinate systems. Coverage of the kinematics and dynamics of unmanned aerial vehicles is developed in a succession of popular UAV configurations for multirotor systems. Such an arrangement, supported by frequent examples and end-of-chapter exercises, leads the reader from simple to more complex UAV configurations. Propulsion-system aerodynamics, essential in UAV design, is analyzed through blade-element and momentum theories, analysis which is followed by a description of drag and ground-aerodynamic effects. The central part of the book is dedicated to aerial-manipulator kinematics, dynamics, and control. Based on foundations laid in the opening chapters, this portion of the book is a structured presentation of Newton–Euler dynamic modeling that results in forward and backward equations in both fixed- and moving-coordinate systems. The Lagrange–Euler approach is applied to expand the model further, providing formalisms to model the variable moment of inertia later used to analyze the dynamics of aerial manipulators in contact with the environment. Using knowledge from sensor data, insights are presented into the ways in which linear, robust, and adaptive control techniques can be applied in aerial manipulation so as to tackle the real-world problems faced by scholars and engineers in the design and implementation of aerial robotics systems. The book is completed by path and trajectory planning with vision-based examples for tracking and manipulation.




Springer Handbook of Automation


Book Description

This handbook incorporates new developments in automation. It also presents a widespread and well-structured conglomeration of new emerging application areas, such as medical systems and health, transportation, security and maintenance, service, construction and retail as well as production or logistics. The handbook is not only an ideal resource for automation experts but also for people new to this expanding field.




Surgical Robotics


Book Description

Surgical robotics is a rapidly evolving field. With roots in academic research, surgical robotic systems are now clinically used across a wide spectrum of surgical procedures. Surgical Robotics: Systems Applications and Visions provides a comprehensive view of the field both from the research and clinical perspectives. This volume takes a look at surgical robotics from four different perspectives, addressing vision, systems, engineering development and clinical applications of these technologies. The book also: -Discusses specific surgical applications of robotics that have already been deployed in operating rooms -Covers specific engineering breakthroughs that have occurred in surgical robotics -Details surgical robotic applications in specific disciplines of surgery including orthopedics, urology, cardiac surgery, neurosurgery, ophthalmology, pediatric surgery and general surgery Surgical Robotics: Systems Applications and Visions is an ideal volume for researchers and engineers working in biomedical engineering.




Twisted String Actuation Systems


Book Description

Twisted String Actuation Systems: Applications, Modelling, and Control discusses the emerging area of twisted string actuation. It provides the basics of modeling and control, while also outlining the potential advantages of this actuation technique. Several detailed case studies describe the requirements and design parameters of the TSAs developed for different robotic applications. In addition, the book covers guidelines for engineers on the design and implementation of TSA in new areas and applications, discussing how to select strings with appropriate properties and suitable material, how to model actuators, and how to predict efficiency and lifetime. The book will benefit the engineering community and increase the popularity of this promising novel type of actuator as it brings together the most up-to-date technologies and advances in the TSA field, along with their background and history.




Motion and Vibration Control


Book Description

Motion and vibration control is a fundamental technology for the development of advanced mechanical systems such as mechatronics, vehicle systems, robots, spacecraft, and rotating machinery. Often the implementation of high performance, low power consumption designs is only possible with the use of this technology. It is also vital to the mitigation of natural hazards for large structures such as high-rise buildings and tall bridges, and to the application of flexible structures such as space stations and satellites. Recent innovations in relevant hardware, sensors, actuators, and software have facilitated new research in this area. This book deals with the interdisciplinary aspects of emerging technologies of motion and vibration control for mechanical, civil and aerospace systems. It covers a broad range of applications (e.g. vehicle dynamics, actuators, rotor dynamics, biologically inspired mechanics, humanoid robot dynamics and control, etc.) and also provides advances in the field of fundamental research e.g. control of fluid/structure integration, nonlinear control theory, etc. Each of the contributors is a recognised specialist in his field, and this gives the book relevance and authority in a wide range of areas.