Emerging Applications of Plasma Science in Allied Technologies


Book Description

The scientific application of plasma across a variety of fields continues to expand with new research at a remarkable rate. The convergence between plasma science and domains such as energy materials, semiconductor systems, textiles, medicine, agriculture, and space exploration is merely scratching the surface of the known possibilities of this technology. Scientists require a sound understanding of the current state of these possibilities in order to push the technology further into the unknown potential of plasma science. The chapters of the book Emerging Applications of Plasma Science in Allied Technologies coalesce to form a holistic panorama of innovations, encompassing everything from sustainable energy solutions to antimicrobial applications. This book stands as a definitive guide to the forefront of innovation and offers a comprehensive dive into the profound impacts of plasma science across diverse fields, presenting a synthesis of cutting-edge research and development. It opens with a meticulous overview of the foundational principles underpinning plasma science, serving as a springboard for the exploration of its myriad applications. From fundamental physics and mechanisms to innovative designs and allied technologies, the pages illuminate the multifaceted dimensions of plasma-based advancements. Plasma technology catalyzes advancements in modern medicine and healthcare. The intricate interplay between plasma-based treatments and living tissues is dissected, revealing a landscape where innovation bridges the gap between science fiction and reality. This book unpacks the critical role of plasma science in the eco-friendly conversion of carbon dioxide, thereby offering a beacon of hope in the struggle against climate change. This book is a trailblazing resource for academics, researchers, and postgraduate students, offering a comprehensive foundation in this groundbreaking field. Industry professionals, from biomedical engineers to agricultural innovators, will find a treasure trove of insights to fuel their work. This book beckons policymakers and visionaries to comprehend the potential of plasma science in steering humanity toward sustainable, cleaner, and healthier futures.




Advancements in Renewable Energy and Green Hydrogen


Book Description

The demand for sustainable energy solutions in rapidly evolving academic and industrial environments is at an all-time high. Challenges faced by those championing sustainability and energy solutions include the integration of green hydrogen, a clean and renewable energy carrier, into hybrid energy systems. Ensuring its traceability, certification, and efficient utilization creates an issue that academics, industry experts, and policymakers are struggling to solve. With the increasing importance of green hydrogen in reducing carbon emissions and addressing climate change, the need for a comprehensive guide to navigate this intricate territory is more pressing than ever. The Handbook of Research on Digitalization and Green Hydrogen Production is a groundbreaking book that provides a holistic and innovative approach to the challenges surrounding green hydrogen integration. It serves as a roadmap for academic scholars and industry professionals, providing deep insights into the various facets of green hydrogen, from production and storage to transportation and utilization. This book tackles the safety concerns associated with transporting green hydrogen and explores innovative technologies like Power-to-Gas-to-Power (P2G2P) and the conversion of hydrogen into ammonia. It also highlights the crucial role of standards and security regulations in ensuring the reliability of green hydrogen processes.




Low Temperature Plasma Technology


Book Description

Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induced fluorescence measurement, and explores the increasing research on atmospheric pressure nonequilibrium plasma jets. The authors also discuss how low temperature plasmas are used in the synthesis of nanomaterials, environmental applications, the treatment of biomaterials, and plasma medicine. This book provides a balanced and thorough treatment of the core principles, novel technology and diagnostics, and state-of-the-art applications of low temperature plasmas. It is accessible to scientists and graduate students in low-pressure plasma physics, nanotechnology, plasma medicine, and materials science. The book is also suitable as an advanced reference for senior undergraduate students.




Advancements in Fine Particle Plasmas


Book Description

This book summarizes the most significant advancements of plasma science in allied technologies. It highlights the most recent developments and important advances in plasma science and technology. It is important for all civilizations to use more cost-effective and eco-friendly plasma technology for industrial, clinical/biotechnology, wastewater, and agricultural applications. Traditional techniques are not effective, and thus, this book examines the challenges that must be solved before novel plasma technology can be successfully used in the future. It also examines aspects of fine particle plasmas, including their fundamental physics, mechanisms, design, allied technologies, and novel methods. The most promising plasma-based devices and nano-plasmas allow us to change approaches in industries such as medicine and agriculture due to their thermophysical (transport and thermodynamics), wave behaviors, as well as external electric and magnetic, acoustic, light, temperature, and other properties. This book highlights recent advances in energy materials, semiconductor systems, plasma medicine, agricultural plasma and food processing, green plasma fusion energy, space science, plasma technology for the conversion of CO2, green energy, and more. Moreover, it examines plasma technology as a key advancement in modern medicine and health care.




Fundamentals and Industrial Applications of Magnetic Nanoparticles


Book Description

Fundamentals and Industrial Applications of Magnetic Nanomaterials highlights industrial applications of magnetic nanoparticles, reviews their rapidly emerging applications, and discusses future research directions. The book emphasizes the structure-property-functionality of magnetic nanoparticles for the most relevant industry applications. After reviewing the fundamentals, industry applications in the biomedical, pharma, environmental, cosmetics and energy industries are explored. Cross-cutting barriers to commercialization are then discussed, along with legal, health and safety implications. Finally, opportunities for enabling a more sustainable future are covered. This book is suitable for researchers and practitioners in academia and industry in materials science and engineering, chemistry and chemical engineering. - Reveals fundamental concepts of magnetic nanoparticles for modern industries and perspectives - Establishes routes for the utilization of magnetic nanoparticles in commercial-scale manufacturing - Discusses opportunities for magnetic nanoparticles to help enable sustainable applications




Magnetic Polymer Composites and Their Emerging Applications


Book Description

Magnetic composite particles offer much potential for use in a variety of applications, including manufacturing, environmental protection, microfluidics, microelectronics, and biomedicine. Magnetic Polymer Composites and Their Emerging Applications explores leading research on the fabrication, characterization, properties, and all reported applications of magnetic polymer composites. Features: Discusses synthesis, properties, and modern fabrication technologies of magnetic polymer composites Describes the biocompatibility, suitability, and toxic effects of these materials Covers a variety of applications including those in biomedicine, wastewater treatment, soft robotics, 3D/4D printing, and agriculture Details opportunities and future directions in magnetic polymer composites and their surface decorations This unique book serves as a road map for materials engineers, as well as researchers, academics, technologists, and students working in sensor technology.




Advances in Dental Implantology using Nanomaterials and Allied Technology Applications


Book Description

As the name suggests this book discusses how nanotechnology has influenced the provision of implant treatment from surgery to prosthetic reconstruction and post treatment biological complications. This book is a sequel to the earlier book “Dental Applications of Nanotechnology” published by Springer. It aims to present both the nanotechnology and allied research along with the clinical concepts of almost every different aspect of implantology in one volume. These two fraternities promote the translation of the research ideas and product development into fruitful practicalities. The first section covers nanobiomaterials in implant applications, in bone regeneration, prosthetic rehabilitation, to control biofilm and peri-implantitis, bone grafting and tissue engineering. The second section explores applications of such new technologies in the field of implantology that gives this book a unique feature by bringing science and technology into clinical application. It covers implant stability, peri-implantitis, lasers, CAD/CAM technology, impressions, 3D printing, reconstruction with bone grafts and zygomatic implants. Comprehensive coverage includes both simple and complicated clinical cases, with practical guidance on how to apply the latest research, diagnostic tools, treatment planning, implant designs, materials, and techniques to provide superior patient outcomes. The book is well written and structured making it easy for experienced clinicians and those new to dental implantology as well as students, researchers, scientists and faculties of dental universities




Nickel-Titanium Smart Hybrid Materials


Book Description

Nickel-Titanium Smart Hybrid Materials: From Micro- to Nano-structured Alloys for Emerging Applications describes advanced properties that can be adapted in NiTi-alloys. Nickel-Titanium (NiTi) systems are receiving wide demand in growing industries due to their smart, high-temperature or biocompatible behavior. These influenced behaviors are carefully described in the micro-scale and nanoscale range, with NiTi smart materials described on the basis of their shape memory effect (SME) and super-elastic (SE) properties for sensor and actuator application. This book discusses novel properties of nickel-titanium systems, helping materials scientists and engineers produce smart technologies and systems for the aeronautical, automobile, mechanical, healthcare and electronics industries. - Describes the use of nanotechnology and microtechnology in nickel-titanium-based systems - Outlines the major properties of Nickel-Titanium Nanoalloys - Assesses the major challenges of manufacturing nickel-titanium nanoalloys at an industrial scale




Scope and Challenge in Plasma : Science & Technology


Book Description

Proceedings of the 19th National Symposium on Plasma Science and Technology, held at Jhansi during 7-10 December 2004.




Plasma-based Radar Cross Section Reduction


Book Description

This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generation. It presents the parametric analysis of propagation behaviour of plasma, and the challenges in the implementation of plasma-based stealth technology. This review serves as a starting point for the graduate and research students, scientists and engineers working in the area of low-observables and stealth technology.