Emerging Hydro-Climatic Patterns, Teleconnections and Extreme Events in Changing World at Different Timescales


Book Description

This Special Issue is expected to advance our understanding of these emerging patterns, teleconnections, and extreme events in a changing world for more accurate prediction or projection of their changes especially on different spatial-time scales.




Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation


Book Description

Extreme weather and climate events, interacting with exposed and vulnerable human and natural systems, can lead to disasters. This Special Report explores the social as well as physical dimensions of weather- and climate-related disasters, considering opportunities for managing risks at local to international scales. SREX was approved and accepted by the Intergovernmental Panel on Climate Change (IPCC) on 18 November 2011 in Kampala, Uganda.




The Ocean and Cryosphere in a Changing Climate


Book Description

The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.




Perspectives on Atmospheric Sciences


Book Description

This book provides the proceedings of the 13th International Conference of Meteorology, Climatology and Atmospheric Physics (COMECAP 2016) that is held in Thessaloniki from 19 to 21 September 2016. The Conference addresses fields of interest for researchers, professionals and students related to the following topics: Agricultural Meteorology and Climatology, Air Quality (Indoor and Outdoor), Applied Meteorology and Climatology, Applications of Meteorology in the Energy sector, Atmospheric Physics and Chemistry, Atmospheric Radiation, Atmospheric Boundary layer, Biometeorology and Bioclimatology, Climate Dynamics, Climatic Changes, Cloud Physics, Dynamic and Synoptic Μeteorology, Extreme Events, Hydrology and Hydrometeorology, Mesoscale Meteorology, Micrometeorology-Urban Microclimate, Remote Sensing- Satellite Meteorology and Climatology, Weather Analysis and Forecasting. The book includes all papers that have been accepted after peer review for presentation in the conference.




Floods in a Changing Climate


Book Description

Provides measurement, analysis and modeling methods for assessment of trends in extreme precipitation events, for academic researchers and professionals.




Hydroclimatology


Book Description

A graduate textbook on the interdisciplinary significance of hydroclimatology, explaining the relationship between the climate system and the hydrologic cycle.




El Niño Southern Oscillation in a Changing Climate


Book Description

Comprehensive and up-to-date information on Earth’s most dominant year-to-year climate variation The El Niño Southern Oscillation (ENSO) in the Pacific Ocean has major worldwide social and economic consequences through its global scale effects on atmospheric and oceanic circulation, marine and terrestrial ecosystems, and other natural systems. Ongoing climate change is projected to significantly alter ENSO's dynamics and impacts. El Niño Southern Oscillation in a Changing Climate presents the latest theories, models, and observations, and explores the challenges of forecasting ENSO as the climate continues to change. Volume highlights include: Historical background on ENSO and its societal consequences Review of key El Niño (ENSO warm phase) and La Niña (ENSO cold phase) characteristics Mathematical description of the underlying physical processes that generate ENSO variations Conceptual framework for understanding ENSO changes on decadal and longer time scales, including the response to greenhouse gas forcing ENSO impacts on extreme ocean, weather, and climate events, including tropical cyclones, and how ENSO affects fisheries and the global carbon cycle Advances in modeling, paleo-reconstructions, and operational climate forecasting Future projections of ENSO and its impacts Factors influencing ENSO events, such as inter-basin climate interactions and volcanic eruptions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors.




Attribution of Extreme Weather Events in the Context of Climate Change


Book Description

As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.




Climate Impacts on Energy Systems


Book Description

"While the energy sector is a primary target of efforts to arrest and reverse the growth of greenhouse gas emissions and lower the carbon footprint of development, it is also expected to be increasingly affected by unavoidable climate consequences from the damage already induced in the biosphere. Energy services and resources, as well as seasonal demand, will be increasingly affected by changing trends, increasing variability, greater extremes and large inter-annual variations in climate parameters in some regions. All evidence suggests that adaptation is not an optional add-on but an essential reckoning on par with other business risks. Existing energy infrastructure, new infrastructure and future planning need to consider emerging climate conditions and impacts on design, construction, operation, and maintenance. Integrated risk-based planning processes will be critical to address the climate change impacts and harmonize actions within and across sectors. Also, awareness, knowledge, and capacity impede mainstreaming of climate adaptation into the energy sector. However, the formal knowledge base is still nascent?information needs are complex and to a certain extent regionally and sector specific. This report provides an up-to-date compendium of what is known about weather variability and projected climate trends and their impacts on energy service provision and demand. It discusses emerging practices and tools for managing these impacts and integrating climate considerations into planning processes and operational practices in an environment of uncertainty. It focuses on energy sector adaptation, rather than mitigation which is not discussed in this report. This report draws largely on available scientific and peer-reviewed literature in the public domain and takes the perspective of the developing world to the extent possible."




Climate Change and Extreme Events


Book Description

Climate Change and Extreme Events uses a multidisciplinary approach to discuss the relationship between climate change-related weather extremes and their impact on human lives. Topics discussed are grouped into four major sections: weather parameters, hydrological responses, mitigation and adaptation, and governance and policies, with each addressed with regard to past, present and future perspectives. Sections give an overview of weather parameters and hydrological responses, presenting current knowledge and a future outlook on air and stream temperatures, precipitation, storms and hurricanes, flooding, and ecosystem responses to these extremes. Other sections cover extreme weather events and discuss the role of the state in policymaking. This book provides a valuable interdisciplinary resource to climate scientists and meteorologists, environmental researchers, and social scientists interested in extreme weather. - Provides an integrated interdisciplinary approach to how climate change impacts the hydrological system - Addresses significant knowledge gaps in our understanding of climate change and extreme events - Discusses the societal impacts of climate change-related weather extremes, including multilevel governance and adaptation policy