Emerging Technologies In Biophysical Sciences: A World Scientific Reference (In 3 Volumes)


Book Description

Volume 1:Biofabrication aims to produce artificially manufactured tissues and organs, potentially revolutionizing conventional paradigm of clinical practice in treating diseases and extending the life span and quality of human beings. In this volume, we invite notable experts in the field of biofabrication and biomanufacturing to summarize recent rapid progress in this field from multifaceted aspects covering biofabrication techniques and building materials such as scaffold and living cells. Specifically, a focus is placed on a variety of techniques derived from 3D bioprinting and bioassembly strategies, such as acoustic assembly and electrofabrication. Moreover, principles and strategies for choosing hydrogels and polymers for biofabrication are also heavily discussed. Overall, this book creates a good opportunity for undergraduate and postgraduate students as well as bioengineers and medical researchers who wish to gain a fundamental understanding of current status and future trends in biofabrication and biomanufacturing.Volume 2:Infertility has become a significant psychosocial burden affecting the lives of couples who cannot reproduce naturally. Advanced reproductive technologies (ARTs) are being developed to treat infertility. This handbook explores significant development of ARTs for fertility testing, selection of sperm, oocyte and embryo, reproductive monitors, automation in embryology, and fertility preservation. This volume provides a comprehensive overview of the myriad of emerging technologies and systems that are being utilized or will be utilized in near future in reproductive clinics. Overall this book creates a good opportunity for undergraduate and postgraduate students as well as scientists and medical researchers who wish to gain fundamental understanding of current status and future trends in fertility and reproductive medicine.Volume 3:Healthcare industry has a notable paradigm transition from centralized care to the point-of-care (POC). During this metamorphosis, a number of new technologies and strategies have been adapted to the current practice, addressing the existing challenges in the fields of medicine and biology. All the efforts aim to improve the clinical management and the effectiveness and quality of care. In particular, diagnostics has pivotal roles in guiding clinical management for the most effective treatment to control and cure the disease. In contrast to the existing diagnostic strategies employing bulky-sized tools, expensive infrastructure, laborious protocols, and lengthy processing steps, the contribution of biosensors to current healthcare system, especially to diagnostics, is paramount. The unprecedented and admirable characteristics of biosensing strategies have expanded our knowledge on medicine and biology by harmonizing materials science, chemistry, physics, and engineering. We believe that biosensors applied to disease diagnostics will not only garner more attention in clinical research to decipher disease biology and mechanism, and also, stimulate innovative perspectives in artificial intelligence (AI) and internet of things (IoT) synergistically, thereby their more facile adaptation to daily-use. Overall this book creates a good opportunity for undergraduate and postgraduate students as well as scientists and medical researchers who wish to gain fundamental understanding of current status and future trends in diagnostic technologies.




Emerging Technologies in Biophysical Sciences


Book Description

"Volume 1: Biofabrication aims to produce artificially manufactured tissues and organs, potentially revolutionizing conventional paradigm of clinical practice in treating diseases and extending the life span and quality of human beings. In this volume, we invite notable experts in the field of biofabrication and biomanufacturing to summarize recent rapid progress in this field from multifaceted aspects covering biofabrication techniques and building materials such as scaffold and living cells. Specifically, a focus is placed on a variety of techniques derived from 3D bioprinting and bioassembly strategies, such as acoustic assembly and electrofabrication. Moreover, principles and strategies for choosing hydrogels and polymers for biofabrication are also heavily discussed. Overall, this book creates a good opportunity for undergraduate and postgraduate students as well as bioengineers and medical researchers who wish to gain a fundamental understanding of current status and future trends in biofabrication and biomanufacturing. Volume 2: Infertility has become a significant clinical condition and about 15% couples cannot reproduce naturally. Advanced reproductive technologies (ARTs) are being developed to treat infertility. This handbook explores significant development of ARTs for fertility testing, selection of sperm, oocyte and embryo, reproductive monitors, automation in embryology, and fertility preservation. This volume provides a comprehensive overview of the myriad emerging technologies and systems that are being utilized or will be utilized in near future in reproductive clinics. Overall this book creates a good opportunity for undergraduate and postgraduate students as well as scientists and medical researchers who wish to gain fundamental understanding of current status and future trends trends in fertility reproductive medicine. Volume 3: Healthcare industry has a notable paradigm transition from centralized care to the point-of-care (POC). During this metamorphosis, a number of new technologies and strategies have been adapted to the current practice, addressing the existing challenges in the fields of medicine and biology. All the efforts aim to improve the clinical management and the effectiveness and quality of care. In particular, diagnostics has pivotal roles in guiding clinical management for the most effective treatment to control and cure the disease. In contrast to the existing diagnostic strategies employing bulky-sized tools, expensive infrastructure, laborious protocols, and lengthy processing steps, the contribution of biosensors to current healthcare system, especially to diagnostics, is paramount. The unprecedented and admirable characteristics of biosensing strategies have expanded our knowledge on medicine and biology by harmonizing materials science, chemistry, physics, and engineering. We believe that biosensors applied in disease diagnostics will not only garner more attention in clinical research to decipher disease biology and mechanism, and also, stimulate innovative perspectives in artificial intelligence and internet of things (IoT) synergistically, thereby their more facile adaptation to daily-use"--




Surface Engineering of Graphene and Graphene Quantum Dots for Industrial and Medical Applications


Book Description

This book explores the synthesis, characterization, and applications of graphene and its derivatives. It covers advancements in improving graphene quality, surface engineering methods, and increasing material functionality. The topics covered include functionalized graphene, graphene quantum dots, novel device fabrication approaches, and diverse applications. The book also investigates the fundamental principles of characterizing graphene and its derivatives, along with electronic structures, theoretical investigations, and computational analyses relevant to their applications, synthesis, and properties. The chapters are organized to cover these topics, starting with a general overview of surface chemistry and its concepts for surface engineering of graphene, the fundamental properties of graphene and its derivatives, their synthesis, and applications in numerous fields, and concludes with a future perspective. Significantly, for the first time, both industrial and medical applications are gathered in one book, enabling us to discuss the confrontation of medical and industrial applications of graphene and graphene quantum dots.




First Step to Quantum Computing: A Practical Guide for Beginners


Book Description

Quantum information is a young and evolving field. This compendium introduces quantum information in a comprehensive self-contained guide without assuming a wealth of knowledge prior to reading.The volume highlights intuition on counterintuitive topics such as quantum mechanics, basic mathematical tools and calculations involving linear algebra, and applies these concepts to quantum information with guided problems and coding exercises.This applied guide largely benefits mid-level undergraduates and perhaps motivated high schoolers.




Emerging Medical Technologies


Book Description




Biophysical Methods for Biotherapeutics


Book Description

With a focus on practical applications of biophysical techniques, this book links fundamental biophysics to the process of biopharmaceutical development. • Helps formulation and analytical scientists in pharma and biotech better understand and use biophysical methods • Chapters organized according to the sequential nature of the drug development process • Helps formulation, analytical, and bioanalytical scientists in pharma and biotech better understand and usestrengths and limitations of biophysical methods • Explains how to use biophysical methods, the information obtained, and what needs to be presented in a regulatory filing, assess impact on quality and immunogenicity • With a focus on practical applications of biophysical techniques, this book links fundamental biophysics to the process of biopharmaceutical development.







Introduction to Bioengineering


Book Description

Bioengineering is attracting many high quality students. This invaluable book has been written for beginning students of bioengineering, and is aimed at instilling a sense of engineering in them.Engineering is invention and designing things that do not exist in nature for the benefit of humanity. Invention can be taught by making inventive thinking a conscious part of our daily life. This is the approach taken by the authors of this book. Each author discusses an ongoing project, and gives a sample of a professional publication. Students are asked to work through a sequence of assignments and write a report. Almost everybody soon realizes that more scientific knowledge is needed, and a strong motivation for the study of science is generated. The teaching of inventive thinking is a new trend in engineering education. Bioengineering is a good field with which to begin this revolution in engineering education, because it is a youthful, developing interdisciplinary field.




The Lognormality Principle And Its Applications In E-security, E-learning And E-health


Book Description

This compendium provides a detailed account of the lognormality principle characterizing the human motor behavior by summarizing a sound theoretical framework for modeling such a behavior, introducing the most recent algorithms for extracting the lognormal components of complex movements in 2, 2.5 and 3 dimensions. It also vividly reports the most advanced applications to handwriting analysis and recognition, signature and writer verification, gesture recognition and calligraphy generation, evaluation of motor skills, improvement/degradation with aging, handwriting learning, education and developmental deficits, prescreening of children with ADHD (Attention Development and Hyperactivity Disorder), monitoring of concussion recovery, diagnosis and monitoring of Alzheimer's and Parkinson's diseases and aging effects in speech and handwriting.The volume provides a unique and useful source of references on the lognormality principle, an update on the most recent advances and an outlook at the most promising future developments in e-Security, e-Learning and e-Health.




Biophotonics


Book Description

This lecture volume aims to give students and researchers in this rapidly expanding field of biophotonics an interdisciplinary perspective. Among the primary topics are ultrahigh resolution microscopy, particle tracking, photon correlation spectroscopy, and nonlinear optical methods as used in biological and biomedical research, with a focus on current applications in biophysics and biomedicine.