Algebra, Arithmetic, and Geometry


Book Description

EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.







Finite Fields and Applications


Book Description

Finite fields Combinatorics Algebraic coding theory Cryptography Background in number theory and abstract algebra Hints for selected exercises References Index.




Random Matrices, Frobenius Eigenvalues, and Monodromy


Book Description

The main topic of this book is the deep relation between the spacings between zeros of zeta and $L$-functions and spacings between eigenvalues of random elements of large compact classical groups. This relation, the Montgomery-Odlyzko law, is shown to hold for wide classes of zeta and $L$-functions over finite fields. The book draws on and gives accessible accounts of many disparate areas of mathematics, from algebraic geometry, moduli spaces, monodromy, equidistribution, and the Weil conjectures, to probability theory on the compact classical groups in the limit as their dimension goes to infinity and related techniques from orthogonal polynomials and Fredholm determinants.




Modelling with Differential and Difference Equations


Book Description

Any student wishing to solve problems via mathematical modelling will find that this book provides an excellent introduction to the subject.




Mathematics in Berlin


Book Description

This little book is conceived as a service to mathematicians attending the 1998 International Congress of Mathematicians in Berlin. It presents a comprehensive, condensed overview of mathematical activity in Berlin, from Leibniz almost to the present day (without, however, including biographies of living mathematicians). Since many towering figures in mathematical history worked in Berlin, most of the chapters of this book are concise biographies. These are held together by a few survey articles presenting the overall development of entire periods of scientific life at Berlin. Overlaps between various chapters and differences in style between the chap ters were inevitable, but sometimes this provided opportunities to show different aspects of a single historical event - for instance, the Kronecker-Weierstrass con troversy. The book aims at readability rather than scholarly completeness. There are no footnotes, only references to the individual bibliographies of each chapter. Still, we do hope that the texts brought together here, and written by the various authors for this volume, constitute a solid introduction to the history of Berlin mathematics.




Integration - A Functional Approach


Book Description

This book covers Lebesgue integration and its generalizations from Daniell's point of view, modified by the use of seminorms. Integrating functions rather than measuring sets is posited as the main purpose of measure theory. From this point of view Lebesgue's integral can be had as a rather straightforward, even simplistic, extension of Riemann's integral; and its aims, definitions, and procedures can be motivated at an elementary level. The notion of measurability, for example, is suggested by Littlewood's observations rather than being conveyed authoritatively through definitions of (sigma)-algebras and good-cut-conditions, the latter of which are hard to justify and thus appear mysterious, even nettlesome, to the beginner. The approach taken provides the additional benefit of cutting the labor in half. The use of seminorms, ubiquitous in modern analysis, speeds things up even further. The book is intended for the reader who has some experience with proofs, a beginning graduate student for example. It might even be useful to the advanced mathematician who is confronted with situations - such as stochastic integration - where the set-measuring approach to integration does not work.




Arithmetic of Quadratic Forms


Book Description

Provides an introduction to quadratic forms.




Secondary Calculus and Cohomological Physics


Book Description

This collection of invited lectures (at the Conference on Secondary Calculus and Cohomological Physics, Moscow, 1997) reflects the state-of-the-art in a new branch of mathematics and mathematical physics arising at the intersection of geometry of nonlinear differential equations, quantum field theory, and cohomological algebra. This is the first comprehensive and self-contained book on modern quantum field theory in the context of cohomological methods and the geometry of nonlinear PDEs.




Algebras and Modules II


Book Description

The 43 research papers demonstrate the application of recent developments in the representation theory of artin algebras and related topics. Among the algebras considered are tame, bi- serial, cellular, factorial hereditary, Hopf, Koszul, non- polynomial growth, pre-projective, Termperley-Lieb, tilted, and quasi-tilted. Other topics include tilting and co-tilting modules and generalizations as *-modules, exceptional sequences of modules and vector bundles, homological conjectives, and vector space categories. The treatment assumes knowledge of non- commutative algebra, including rings, modules, and homological algebra at a graduate or professional level. No index. Member prices are $79 for institutions and $59 for individuals, which also apply to members of the Canadian Mathematical Society. Annotation copyrighted by Book News, Inc., Portland, OR