Materials for Energy Efficiency and Thermal Comfort in Buildings


Book Description

Almost half of the total energy produced in the developed world is inefficiently used to heat, cool, ventilate and control humidity in buildings, to meet the increasingly high thermal comfort levels demanded by occupants. The utilisation of advanced materials and passive technologies in buildings would substantially reduce the energy demand and improve the environmental impact and carbon footprint of building stock worldwide.Materials for energy efficiency and thermal comfort in buildings critically reviews the advanced building materials applicable for improving the built environment. Part one reviews both fundamental building physics and occupant comfort in buildings, from heat and mass transport, hygrothermal behaviour, and ventilation, on to thermal comfort and health and safety requirements.Part two details the development of advanced materials and sustainable technologies for application in buildings, beginning with a review of lifecycle assessment and environmental profiling of materials. The section moves on to review thermal insulation materials, materials for heat and moisture control, and heat energy storage and passive cooling technologies. Part two concludes with coverage of modern methods of construction, roofing design and technology, and benchmarking of façades for optimised building thermal performance.Finally, Part three reviews the application of advanced materials, design and technologies in a range of existing and new building types, including domestic, commercial and high-performance buildings, and buildings in hot and tropical climates.This book is of particular use to, mechanical, electrical and HVAC engineers, architects and low-energy building practitioners worldwide, as well as to academics and researchers in the fields of building physics, civil and building engineering, and materials science. - Explores improving energy efficiency and thermal comfort through material selection and sustainable technologies - Documents the development of advanced materials and sustainable technologies for applications in building design and construction - Examines fundamental building physics and occupant comfort in buildings featuring heat and mass transport, hygrothermal behaviour and ventilation




Energy-Efficient Retrofit of Buildings by Interior Insulation


Book Description

Energy-Efficient Retrofit of Buildings by Interior Insulation: Materials, Methods and Tools offers readers comprehensive coverage of current research in German Language Countries. Chapters provide an overview on the development of energy efficiency for building retrofits and the role of internal insulation, cover materials with chapters on Brick, Wood, Plaster, Clay, and Natural Stone, explain the impact of internal insulation in those materials and how to cope with problems such as moisture build, mold and algae growth, provide practical advice on how to apply internal insulation in the most effective way, including Salt Efflorescence, Noise Protection, Fire Prevention, and more. The practical approach of the book, with examples in all chapters, makes it valuable for Civil and Architectural Engineers involved with building retrofit. The book may also be useful to researchers in the field of Building Physics due to the breadth of the coverage. - Introduces methods and tools through application examples - Presents theory and simulations with practical information to validate models - Explores a wide variety of materials and applications - Features examples of Residential, Commercial and Historic Buildings - Covers all stages of the retrofit process, from planning to inspection and how to avoid damage




Flat Roof Construction Manual


Book Description

Das Flachdach – dieser bei Architekten beliebte und gerne als fünfte Fassade beschriebene Gebäudeteil – sollte im Wesentlichen den darunter liegenden Raum vor Witterungseinflüssen schützen. Darüber hinaus optimiert die Integration flacher Dächer als Gründach, Dachterrasse, Verkehrsfläche oder gar als ertragreiches Solardach den Nutzen. Die fachgerechte Realisierung in der Praxis ist jedoch anspruchsvoll: der „Flachdach Atlas“ verschafft dem Planer neben grundsätzlichen Konstruktionsregeln einen Überblick über die Nutzungs- und Konstruktionsarten sowie die Regelaufbauten für Flachdächer. Zusammen mit den wichtigsten Normen und Regelwerken runden Konstruktionsdarstellungen der wesentlichen Anschlusspunkte die Publikation ab.




Nonconventional and Vernacular Construction Materials


Book Description

Nonconventional and Vernacular Construction Materials: Characterisation, Properties and Applications, Second Edition covers the topic by taking into account sustainability, the conservation movement, and current interests in cultural identity and its preservation. This updated edition presents case studies, information on relevant codes and regulations, and how they apply (or do not apply) to nocmats. Leading international experts contribute chapters on current applications and the engineering of these construction materials. Sections review vernacular construction, provide future directions for nonconventional and vernacular materials research, focus on natural fibers, and cover the use of industrial byproducts and natural ashes in cement mortar and concrete. - Takes a scientifically rigorous approach to vernacular and non-conventional building materials and their applications - Includes a series of case studies and new material on codes and regulations, thus providing an invaluable compendium of practical knowhow - Presents the wider context of materials science and its applications in the sustainability agenda




Modern Earth Buildings


Book Description

The construction of earth buildings has been taking place worldwide for centuries. With the improved energy efficiency, high level of structural integrity and aesthetically pleasing finishes achieved in modern earth construction, it is now one of the leading choices for sustainable, low-energy building. Modern earth buildings provides an essential exploration of the materials and techniques key to the design, development and construction of such buildings.Beginning with an overview of modern earth building, part one provides an introduction to design and construction issues including insulation, occupant comfort and building codes. Part two goes on to investigate materials for earth buildings, before building technologies are explored in part three including construction techniques for earth buildings. Modern earth structural engineering is the focus of part four, including the creation of earth masonry structures, use of structural steel elements and design of natural disaster-resistant earth buildings. Finally, part five of Modern earth buildings explores the application of modern earth construction through international case studies.With its distinguished editors and international team of expert contributors, Modern earth buildings is a key reference work for all low-impact building engineers, architects and designers, along with academics in this field. - Provides an essential exploration of the materials and techniques key to the design, development and construction of modern earth buildings - Comprehensively discusses design and construction issues, materials for earth buildings, construction techniques and modern earth structural engineering, among other topics - Examines the application of modern earth construction through international case studies




Hygrothermal Numerical Simulation Tools Applied to Building Physics


Book Description

This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measurement of relevant transport properties, and (d) the numerical investigation and application The main benefit of the book is that it discusses all the topics related to numerical simulation tools in building components (including state-of-the-art and applications) and presents some of the most important theoretical and numerical developments in building physics, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, this book will be going to the encounter of a variety of scientific and engineering disciplines, such as civil and mechanical engineering, architecture, etc... The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.




Building Physics


Book Description

This book provides thorough coverage of the most important building physics phenomena: heat transfer, moisture, sound/acoustics, and illumination. Since the book is primarily aimed at engineers, it addresses professional issues with due pragmatism, and by including many practical examples and related ISO standards. Nevertheless, in order to guarantee full comprehension, it also explains the underlying physical principles and relates them to practical aspects in a simple and clear way. This is achieved with the aid of more than 100 figures and consistent cross-referencing of formulas and ideas. In addition, interrelationships between the different building physics phenomena are elucidated in a way that will enable readers to develop performance specifications that inform the design process. The book will primarily appeal to students of civil engineering and architecture, as well as to all practitioners in these areas who wish to broaden their fundamental understanding of topics in building physics.




Case Studies of Building Pathology in Cultural Heritage


Book Description

This book highlights new developments in the field of building pathology and rehabilitation, taking an in-depth look into current approaches to the surveying of buildings and the study of defect diagnosis, prognosis and remediation. Including a number of real-world case studies and a detailed set of references for further reading, the book will appeal to a wide readership of scientists, practitioners, students and lecturers.




Numerical Simulations


Book Description

This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modeling and computer simulation. Although it represents only a small sample of the research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. It will be useful to encourage further experimental and theoretical researches in the above mentioned areas of numerical simulation.