Enantioselective C-C Bond Forming Reactions


Book Description

Enantioselective C-C Bond Forming Reactions: From Metal Complex-, Organo-, and Bio-catalyzed Perspectives, Volume 73 in the Advances in Catalysis series, highlights new advances in the field, with this new volume presenting interesting chapters on topics such as An introduction to Chirality, Metal-catalyzed stereoselective C-C-bond forming reactions, Enantioselective C-C bond forming reactions promoted by organocatalysts based on unnatural amino acid derivatives, Enantioselective C-C bond formation in complex multicatalytic system, Gold-based multicatalytic systems for enantioselective C-C Bond forming reactions, Novel enzymatic tools for C-C bond formation through the development of new-to-nature biocatalysis, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in Advances in Catalysis serials - Updated release includes the latest information in the field




Enantioselective Organocatalyzed Reactions II


Book Description

Organocatalyzed Reactions I and II presents a timely summary of organocatalysed reactions including: a) Enantioselective C-C bond formation processes e.g. Michael-addition, Mannich-reaction, Hydrocyanation (Strecker-reaction), aldol reaction, allylation, cycloadditions, aza-Diels-Alder reactions, benzoin condensation, Stetter reaction, conjugative Umpolung, asymmetric Friedel-Crafts reactions; b) Asymmetric enantioselective reduction processes e.g. Reductive amination of aldehydes or ketones, asymmetric transfer hydrogenation; c) Asymmetric enantioselective oxidation processes; d) Asymmetric epoxidation, Bayer-Villiger oxidation; e) Enantioselective a-functionalization; f) A-alkylation of ketones, a-halogenation and a-oxidation of carbonyl compounds.




P-stereogenic Ligands in Enantioselective Catalysis


Book Description

P-stereogenic ligands were among the first to be used in asymmetric catalysis but synthetic difficulties and prejudices have hampered their development. However, continuous screening for new chiral ligands means that they can no longer be ignored and this rigorous reference source reflects their renaissance.The book is filled with many examples from recent primary literature. The synthetic chemist will easily be able to follow the preparation methods which are accompanied by a description of the challenges and limitations. Those working in homogenous catalysis, and wanting to increase their repertoire of ligands, will be able to establish which have already been used in each reaction and their performance.This book provides comprehensive coverage of the application of P-stereogenic ligands in homogeneous catalysis. It begins with a brief chapter on generalities of P-stereogenic compounds: history, configurational stability, and interconversions among them.The book then goes on to describe the main preparative methods, from resolution of racemates to enantioselective catalysis, before focusing on the catalytic applications of P-stereogenic ligands. Chapter 7 describes the use of the ligands in catalytic hydrogenation and related reactions whereas chapter 8 deals with other reactions, mainly C-C bond forming reactions. The aim of these two final chapters is to give an outline of the usefulness of the ligands in homogeneous catalysis.




C-H Activation for Asymmetric Synthesis


Book Description

Provides, in one handbook, comprehensive coverage of one of the hottest topics in stereoselective chemistry Written by leading international authors in the field, this book introduces readers to C-H activation in asymmetric synthesis along with all of its facets. It presents stereoselective C-H functionalization with a broad coverage, from outer-sphere to inner-sphere C-H bond activation, and from the control of olefin geometry to the induction of point, planar and axial chirality. Moreover, methods wherein asymmetry is introduced either during the C-H activation or in a different elementary step are discussed. Presented in two parts?asymmetric activation of C(sp3)-H bonds and stereoselective synthesis implying activation of C(sp2)-H bonds?CH-Activation for Asymmetric Synthesis showcases the diversity of stereogenic elements, which can now be constructed by C-H activation methods. Chapters in Part 1 cover: C(sp3)-H bond insertion by metal carbenoids and nitrenoids; stereoselective C-C bond and C-N bond forming reactions through C(sp3)?H bond insertion of metal nitrenoids; enantioselective intra- and intermolecular couplings; and more. Part 2 looks at: C-H activation involved in stereodiscriminant step; planar chirality; diastereoselective formation of alkenes through C(sp2)?H bond activation; amongst other methods. -Covers one of the most rapidly developing fields in organic synthesis and catalysis -Clearly structured in two parts (activation of sp3- and activation of sp2-H bonds) -Edited by two leading experts in C-H activation in asymmetric synthesis CH-Activation for Asymmetric Synthesis will be of high interest to chemists in academia, as well as those in the pharmaceutical and agrochemical industry.




New Frontiers in Asymmetric Catalysis


Book Description

A compilation of recent advances and applications in asymmetric catalysis The field of asymmetric catalysis has grown rapidly and plays a key role in drug discovery and pharmaceuticals. New Frontiers in Asymmetric Catalysis gives readers a fundamental understanding of the concepts and applications of asymmetric catalysis reactions and discusses the latest developments and findings. With contributions from preeminent scientists in their respective fields, it covers: * "Rational" ligand design, which is critically dependent on the reaction type (reduction, oxidation, and C-C bond formation) * Recent findings on activation of C-H bonds, C-C bonds, and small molecules (C=O, HCN, RN=C, and CO2) and the latest developments on C-C bond reorganization, such as metathesis * Advances in "chirally economical" non-linear phenomena, racemic catalysis, and autocatalysis * Some of the recent discoveries that have led to a renaissance in the field of organocatalysis, including the development of chiral Brönstead acids and Lewis acidic metals bearing the conjugate base of the Brönstead acids as the ligands and the chiral bi-functional acid/base catalysts The book ends with a thought-provoking perspective on the future of asymmetric catalysis that addresses both the challenges and the unlimited potential in this burgeoning field. This is an authoritative, up-to-date reference for organic chemists in academia, government, and industries, including pharmaceuticals, biotech, fine chemicals, polymers, and agriculture. It is also an excellent textbook for graduate students studying advanced organic chemistry or chemical synthesis.




C-X Bond Formation


Book Description

Contents: Kilian Muñiz: Transition Metal Catalyzed Electrophilic Halogenation of C-H bonds in alpha-Position to Carbonyl Groups; Arkadi Vigalok * and Ariela W Kaspi: Late Transition Metal-Mediated Formation of Carbon-Halogen Bonds; Paul Bichler and Jennifer A. Love*: Organometallic Approaches to Carbon-Sulfur Bond Formation; David S. Glueck: Recent Advances in Metal-Catalyzed C-P Bond Formation; Andrei N. Vedernikov: C-O Reductive Elimination from High Valent Pt and Pd Centers; Lukas Hintermann: Recent Developments in Metal-Catalyzed Additions of Oxygen Nucleophiles to Alkenes and Alkynes; Moris S. Eisen: Catalytic C-N, C-O and C-S bond formation promoted by organoactinide complexes.




Catalysis in Asymmetric Synthesis


Book Description

Asymmetric synthesis has become a major aspect of modern organic chemistry. The stereochemical properties of an organic compound are often essential to its bioactivity, and the need for stereochemically pure pharmaceutical products is a key example of the importance of stereochemical control in organic synthesis. However, achieving high levels of stereoselectivity in the synthesis of complex natural products represents a considerable intellectual and practical challenge for chemists. Written from a synthetic organic chemistry perspective, this text provides a practical overview of the field, illustrating a wide range of transformations that can be achieved. The book captures the latest advances in asymmetric catalysis with emphasis placed on non-enzymatic methods. Topics covered include: Reduction of alkenes, ketones and imines Nucleophilic addition to carbonyl compounds Catalytic carbon-carbon bond forming reactions Catalytic reactions involving metal carbenoids Conjugate addition reactions Catalysis in Asymmetric Synthesis bridges the gap between undergraduate and advanced level textbooks and provides a convenient point of entry to the primary literature for the experienced synthetic organic chemist.




Organocatalytic Enantioselective Conjugate Addition Reactions


Book Description

This book, unique in its field, is a comprehensive description of all the methodologies reported for carrying out conjugate addition reactions in a stereoselective way, using small chiral organic molecules as catalysts (organocatalysts). In the last 3-4 years, this has been a rapidly growing field in organic chemistry, and many papers have appeared reporting excellent protocols for carrying out these highly efficient transformations that compete well with other classical approachse using transition metal catalysts. A particularly attractive feature of this transformation relies upon the fact that the conjugate addition (Michael and Hetero-Michael reactions) is an extraoridinarily effective means to initiate cascade processes which result in the formation of complex molecules from very small and simple starting blocks. The book, written by noted experts, covers all recent advances in this not topic, and provides a good state-of-the-art review for organic chemists working in this field and all those who wish to start projects in this area. The Series is intended to provide an accessible reference for postgraduates and industrialists working in the field of catalysis and its applications. Books will be produced either as monographs or reference handbooks. The Series will cover research developments and applications of catalysis, in both academia and industry.




Cross-Coupling Reactions


Book Description

In 1972, a very powerful catalytic cycle for carbon-carbon bond formation was 2 first discovered by the coupling reaction of Grignard reagents at the sp -carbon. Over the past 30 years, the protocol has been substantially improved and expanded to other coupling reactions of Li,B,N,O,Al,Si,P,S,Cu,Mn,Zn,In,Sn, and Hg compounds. These reactions provided an indispensable and simple methodology for preparative organic chemists. Due to the simplicity and rel- bility in the carbon-carbon, carbon-heteroatom, and carbon-metalloid bo- formations,as well as high efficiency of the catalytic process,the reactions have been widely employed by organic chemists in various fields. Application of the protocol ranges from various syntheses of complex natural products to the preparation of biologically relevant molecules including drugs, and of sup- molecules, and to functional materials. The reactions on solid surfaces allow robot synthesis and combinatorial synthesis. Now, many organic chemists do not hesitate to use transition metal complexes for the transformation of org- ic molecules. Indeed, innumerable organic syntheses have been realized by the catalyzed reactions of transition metal complexes that are not achievable by t- ditional synthetic methods. Among these, the metal-catalyzed cross-coupling reactions have undoubtedly contributed greatly to the development of such a new area of “metal-catalyzed organic syntheses”. An excellent monograph for the cross-coupling reactions and other met- catalyzed C-C bond-forming reactions recently appeared in Metal-catalyzed Cross-coupling Reactions (Wiley-VCH,1998).




Transition-Metal-Mediated Aromatic Ring Construction


Book Description

State-of-the-science methods, synthetic routes, and strategies to construct aromatic rings The development of new reactions for the synthesis of aromatic compounds is a highly active research area in organic synthesis, providing new functional organic materials, functional reagents, and biologically active compounds. Recently, significant advances in transition-metal-mediated reactions have enabled the efficient and practical construction of new aromatic rings with useful properties and applications. This book draws together and reviews all the latest discoveries and methods in transition-metal-mediated reactions, offering readers promising new routes to design and construct complex aromatic compounds. Integrating metal catalysis with aromatic compound synthesis, Transition-Metal-Mediated Aromatic Ring Construction offers a practical guide to the methods, synthetic routes, and strategies for constructing aromatic compounds. The book's five parts examine: [2+2+2], [2+2+1], and related cycloaddition reactions [4+2], [3+2], and related cycloaddition reactions Electrocyclization reactions Coupling and addition reactions Other important transformations, including methathesis reactions and skeletal rearrangement reactions Edited by Ken Tanaka, an internationally recognized expert in the field of transition-metal catalysis, the book features authors who are leading pioneers and researchers in synthetic reactions. Their contributions reflect a thorough review and analysis of the literature as well as their own firsthand laboratory experience developing new aromatic compounds. All chapters end with a summary and outlook, setting forth new avenues of research and forecasting new discoveries. There are also references at the end of each chapter, guiding readers to important original research reports and reviews. In summary, Transition-Metal-Mediated Aromatic Ring Construction offers synthetic chemists a promising new avenue for the development of important new aromatic compounds with a broad range of applications.