Encapsulation Nanotechnologies


Book Description

This unique and comprehensive book covers all the recent physical, chemical, and mechanical advancements in encapsulation nanotechnologies. Encapsulation is prevalent in the evolutionary processes of nature, where nature protects the materials from the environment by engulfing them in a suitable shell. These natural processes are well known and have been adopted and applied in the pharmaceutical, food, agricultural, and cosmetics industries. In recent years, because of the increased understanding of the material properties and behaviors at nanoscale, research in the encapsulation field has also moved to the generation of nanocapsules, nanocontainers, and other nano devices. One such example is the generation of self-healing nanocontainers holding corrosion inhibitors that can be used in anti-corrosion coatings. The processes used to generate such capsules have also undergone significant developments. Various technologies based on chemical, physical, and physico-chemical synthesis methods have been developed and applied successfully to generate encapsulated materials. Because of the increasing potential and value of the new nanotechnologies and products being used in a large number of commercial processes, the need for compiling one comprehensive volume comprising the recent technological advancements is also correspondingly timely and significant. This volume not only introduces the subject of encapsulation and nanotechnologies to scientists new to the field, but also serves as a reference for experts already working in this area. Encapsulation Nanotechnologies details in part: The copper encapsulation of carbon nanotubes Various aspects of the application of fluid-bed technology for the coating and encapsulation processes The use of the electrospinning technique for encapsulation The concept of microencapsulation by interfacial polymerization Overviews of encapsulation technologies for organic thin-film transistors (OTFTs), polymer capsule technology, the use of supercritical fluids (such as carbon dioxide), iCVD process for large-scale applications in hybrid gas barriers Readership Encapsulation Nanotechnologiesis of prime interest to a wide range of materials scientists and engineers, both in industry and academia.




Nanoencapsulation Technologies for the Food and Nutraceutical Industries


Book Description

Nanoencapsulation Technologies for the Food and Nutraceutical Industries is a compendium which collects, in an easy and compact way, state-of-the-art details on techniques for nanoencapsulation of bioactive compounds in food and nutraceutical industries. The book addresses important modern technologies, including biopolymer based nano-particle formation techniques, formulation based processes, such as nano-liposomes and nano-emulsions, process based nano-encapsulation, such as electro-spinning and nano-spray drying, natural nano-carrier based processes, like casein and starch nano-particles, and other recent advances. This definitive reference manual is ideal for researchers and industry personnel who want to learn more about basic concepts and recent developments in nanotechnology research. - Serves as a compendium of recent techniques and systems for nanoencapsulation of bioactive compounds - Brings together basic concepts and the potential of nanoencapsulation technologies, also including their novel applications in functional foods and nutraceutical systems - Includes biopolymer based nano-particle formation techniques, formulation based processes, process based nanoencapsulation, and nano-carrier based process




Nano- and Microencapsulation for Foods


Book Description

Today, nano- and microencapsulation are increasingly being utilized in the pharmaceutical, textile, agricultural and food industries. Microencapsulation is a process in which tiny particles or droplets of a food are surrounded by a coating to give small capsules. These capsules can be imagined as tiny uniform spheres, in which the particles at the core are protected from outside elements by the protective coating. For example, vitamins can be encapsulated to protect them from the deterioration they would undergo if they were exposed to oxygen. This book highlights the principles, applications, toxicity and regulation of nano- and microencapsulated foods. Section I describes the theories and concepts of nano- and microencapsulation for foods adapted from pharmaceutical areas, rationales and new strategies of encapsulation, and protection and controlled release of food ingredients. Section II looks closely at the nano- and microencapsulation of food ingredients, such as vitamins, minerals, phytochemical, lipid, probiotics and flavors. This section provides a variety of references for functional food ingredients with various technologies of nano particles and microencapsulation. This section will be helpful to food processors and will deal with food ingredients for making newly developed functional food products. Section III covers the application of encapsulated ingredients to various foods, such as milk and dairy products, beverages, bakery and confectionery products, and related food packaging materials. Section IV touches on other related issues in nano- and microencapsulation, such as bioavailability, bioactivity, potential toxicity and regulation.




Encapsulations


Book Description

Encapsulations, a volume in the Nanotechnology in the Agri-Food Industry series,presents key elements in establishing food quality through the improvement of food flavor and aroma. The major benefits of nanoencapsulation for food ingredients include improvement in bioavailability of flavor and aroma ingredients, improvement in solubility of poor water-soluble ingredients, higher ingredient retention during production process, higher activity levels of encapsulated ingredients, improved shelf life, and controlled release of flavor and aroma. This volume discusses main nanoencapsulation processes such as spray drying, melt injection, extrusion, coacervation, and emulsification. The materials used in nanoencapsulation include lipids, proteins, carbohydrates, cellulose, gums, and food grade polymers. Applications and benefits of nanoencapsulation such as controlled release, protections, and taste masking will be explained in detail. - Includes the most up-to-date information on nanoencapsulation and nanocontainer-based delivery of antimicrobials - Presents nanomaterials for innovation based on scientific advancements in the field - Provides control release strategies to enhance bioactivity, including methods and techniques for research and innovation - Provides useful tools to improve the delivery of bioactive molecules and living cells into foods




Application of Nano/Microencapsulated Ingredients in Food Products


Book Description

Application of Nano/Microencapsulated Ingredients in Food Products, a volume in the Nanoencapsulation in the Food Industry series, presents applications of nano/micro-encapsulated ingredients such as vitamins, minerals, flavors, colorants, enzymes, probiotics antioxidants and many other bioactive components in different groups of food products. Each chapter explores nano/microencapsulated ingredients in food products, including beverages, cereal flours and bakery products, meat, oils and fats, salt, spices and seasonings, functional supplements, and in chewing gum. In addition, the book explores active food packaging and edible coatings with nano/microencapsulated ingredients. Authored by a team of global experts in the fields of nano and microencapsulation of food, nutraceutical and pharmaceutical ingredients, this title is of great value to those engaged in the various fields of nanoencapsulation. - Clarifies which nanoencapsulated ingredients can be applied for different food products - Thoroughly explores the influence of nanoencapsulated ingredients on the qualitative properties of different food products




Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals


Book Description

Improved technologies for the encapsulation, protection, release and enhanced bioavailability of food ingredients and nutraceutical components are vital to the development of future foods. Encapsulation technologies and delivery systems for food ingredients and nutraceuticals provides a comprehensive guide to current and emerging techniques.Part one provides an overview of key requirements for food ingredient and nutraceutical delivery systems, discussing challenges in system development and analysis of interaction with the human gastrointestinal tract. Processing technologies for encapsulation and delivery systems are the focus of part two. Spray drying, cooling and chilling are reviewed alongside coextrusion, fluid bed microencapsulation, microencapsulation methods based on biopolymer phase separation, and gelation phenomena in aqueous media. Part three goes on to investigate physicochemical approaches to the production of encapsulation and delivery systems, including the use of micelles and microemulsions, polymeric amphiphiles, liposomes, colloidal emulsions, organogels and hydrogels. Finally, part four reviews characterization and applications of delivery systems, providing industry perspectives on flavour, fish oil, iron micronutrient and probiotic delivery systems.With its distinguished editors and international team of expert contributors, Encapsulation technologies and delivery systems for food ingredients and nutraceuticals is an authoritative guide for both industry and academic researchers interested in encapsulation and controlled release systems. - Provides a comprehensive guide to current and emerging techniques in encapsulation technologies and delivery systems - Chapters in part one provide an overview of key requirements for food ingredient and nutraceutical delivery systems, while part two discusses processing technologies for encapsulation and delivery systems - Later sections investigate physicochemical approaches to the production of encapsulation and delivery systems and review characterization and applications of delivery systems




Encapsulation Technologies for Electronic Applications


Book Description

Encapsulation Technologies for Electronic Applications, Second Edition, offers an updated, comprehensive discussion of encapsulants in electronic applications, with a primary emphasis on the encapsulation of microelectronic devices and connectors and transformers. It includes sections on 2-D and 3-D packaging and encapsulation, encapsulation materials, including environmentally friendly 'green' encapsulants, and the properties and characterization of encapsulants. Furthermore, this book provides an extensive discussion on the defects and failures related to encapsulation, how to analyze such defects and failures, and how to apply quality assurance and qualification processes for encapsulated packages. In addition, users will find information on the trends and challenges of encapsulation and microelectronic packages, including the application of nanotechnology. Increasing functionality of semiconductor devices and higher end used expectations in the last 5 to 10 years has driven development in packaging and interconnected technologies. The demands for higher miniaturization, higher integration of functions, higher clock rates and data, and higher reliability influence almost all materials used for advanced electronics packaging, hence this book provides a timely release on the topic. - Provides guidance on the selection and use of encapsulants in the electronics industry, with a particular focus on microelectronics - Includes coverage of environmentally friendly 'green encapsulants' - Presents coverage of faults and defects, and how to analyze and avoid them




Nano- and Microencapsulation


Book Description

Nano- or micro-encapsulation is used in many different fields and industries, including pharmaceuticals, cosmetics, food, and agrochemicals. It offers advantages for various applications, especially drug delivery. Nano-encapsulation can help extend and control the release of drugs as well as increase drug bioavailability and efficacy. It improves the precision of targeted drug delivery and allows for fabricating nano-encapsulated drugs for diagnostic and theranaostic applications. This book covers recent advances in fabricating nano-/micro-capsules using natural carriers for therapeutic and diagnostic drug delivery applications as well as rheology and formulations of micro-emulsions for diverse applications. This book is essential for scientists and researchers with diverse backgrounds in chemistry, engineering, material sciences, pharmaceuticals, and drug delivery.







Nanotechnology Applications in Food


Book Description

Nanotechnology Applications in Food: Flavor, Stability, Nutrition, and Safety is an up-to-date, practical, applications-based reference that discusses the advantages and disadvantages of each application to help researchers, scientists, and bioengineers know what and what not to do to improve and facilitate the production of food ingredients and monitor food safety. The book offers a broad spectrum of topics trending in the food industry, such as pharmaceutical, biomedical, and antimicrobial approaches in food, highlighting current concerns regarding safety, regulations, and the restricted use of nanomaterials. - Includes how nanobiosensors are useful for the detection of foodborne pathogens - Discusses applications of nanotechnology from flavor and nutrition, to stability and safety in packaging - Includes nano and microencapsulation, nanoemulsions, nanosensors, and nano delivery systems - Identifies practical applications of nanoscience for use in industry today