Encyclopaedia of Mathematics, Supplement III


Book Description

This is the third supplementary volume to Kluwer's highly acclaimed twelve-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing twelve volumes, and together, these thirteen volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.




Encyclopaedia of Mathematics


Book Description

This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fme subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.




Lie Algebras, Vertex Operator Algebras and Their Applications


Book Description

The articles in this book are based on talks given at the international conference 'Lie algebras, vertex operator algebras and their applications'. The focus of the papers is mainly on Lie algebras, quantum groups, vertex operator algebras and their applications to number theory, combinatorics and conformal field theory.




Entropy and the Quantum II


Book Description

The goal of the Entropy and the Quantum schools has been to introduce young researchers to some of the exciting current topics in mathematical physics. These topics often involve analytic techniques that can easily be understood with a dose of physical intuition. In March of 2010, four beautiful lectures were delivered on the campus of the University of Arizona. They included Isoperimetric Inequalities for Eigenvalues of the Laplacian by Rafael Benguria, Universality of Wigner Random Matrices by Laszlo Erdos, Kinetic Theory and the Kac Master Equation by Michael Loss, and Localization in Disordered Media by Gunter Stolz. Additionally, there were talks by other senior scientists and a number of interesting presentations by junior participants. The range of the subjects and the enthusiasm of the young speakers are testimony to the great vitality of this field, and the lecture notes in this volume reflect well the diversity of this school.




Encyclopedia of Mathematics Education


Book Description

The Encyclopedia of Mathematics Education is a comprehensive reference text, covering every topic in the field with entries ranging from short descriptions to much longer pieces where the topic warrants more elaboration. The entries provide access to theories and to research in the area and refer to the leading publications for further reading. The Encyclopedia is aimed at graduate students, researchers, curriculum developers, policy makers, and others with interests in the field of mathematics education. It is planned to be 700 pages in length in its hard copy form but the text will subsequently be up-dated and developed on-line in a way that retains the integrity of the ideas, the responsibility for which will be in the hands of the Editor-in-Chief and the Editorial Board. This second edition will include additional entries on: new ideas in the politics of mathematics education, working with minority students, mathematics and art, other cross-disciplinary studies, studies in emotions and mathematics, new frameworks for analysis of mathematics classrooms, and using simulations in mathematics teacher education. Existing entries will be revised and new entries written. Members of the international mathematics education research community will be invited to propose new entries. Editorial Board: Bharath Sriraman Melony Graven Yoshinori Shimizu Ruhama Even Michele Artigue Eva Jablonka Wish to Become an Author? Springer's Encyclopedia of Mathematics Education's first edition was published in 2014. The Encyclopedia is a "living" project and will continue to accept articles online as part of an eventual second edition. Articles will be peer-reviewed in a timely manner and, if found acceptable, will be immediately published online. Suggested articles are, of course, welcome. Feel encouraged to think about additional topics that we overlooked the first time around, and to suggest colleagues (including yourself!) who will want to write them. Interested new authors should contact the editor in chief, Stephen Lerman, at [email protected], for more specific instructions.




Fourth Summer School in Analysis and Mathematical Physics


Book Description

This book consists of three expository articles written by outstanding researchers in Mathematical Physics: Rafael Benguria, Peter Hislop, and Elliott Lieb. The articles are based on their lectures at the Fourth Summer School in Analysis and Mathematical Physics, held at the Institute of Mathematics, Universidad Nacional Autonoma de Mexico, Cuernavaca in May 2005. The main goal of the articles is to link the basic knowledge of a graduate student in Mathematics with three current research topics in Mathematical Physics: Isoperimetric inequalities for eigenvalues of the Laplace Operator, Random Schrodinger Operators, and Stability of Matter, respectively. These well written articles will guide and introduce the reader to current research topics and will also provide information on recent progress in some areas of Mathematical Physics.




Non-Associative Normed Algebras


Book Description

The first systematic account of the basic theory of normed algebras, without assuming associativity. Sure to become a central resource.




Process Measurement in Business Process Management


Book Description

Process measurement deals with the quantification of business process models using process model metrics. This book presents a theoretical framework for the prediction of external process model attributes (as, for example, error-proneness and understandabiltiy) based on internal (structural) attributes. The properties of proposed metrics are analyzed. A visualization technique for metric values is introduced and metrics for process model understandability and granularity are evaluated.




Graph Theory


Book Description

This is the first in a series of volumes, which provide an extensive overview of conjectures and open problems in graph theory. The readership of each volume is geared toward graduate students who may be searching for research ideas. However, the well-established mathematician will find the overall exposition engaging and enlightening. Each chapter, presented in a story-telling style, includes more than a simple collection of results on a particular topic. Each contribution conveys the history, evolution, and techniques used to solve the authors’ favorite conjectures and open problems, enhancing the reader’s overall comprehension and enthusiasm. The editors were inspired to create these volumes by the popular and well attended special sessions, entitled “My Favorite Graph Theory Conjectures," which were held at the winter AMS/MAA Joint Meeting in Boston (January, 2012), the SIAM Conference on Discrete Mathematics in Halifax (June,2012) and the winter AMS/MAA Joint meeting in Baltimore(January, 2014). In an effort to aid in the creation and dissemination of open problems, which is crucial to the growth and development of a field, the editors requested the speakers, as well as notable experts in graph theory, to contribute to these volumes.




Atomicity through Fractal Measure Theory


Book Description

This book presents an exhaustive study of atomicity from a mathematics perspective in the framework of multi-valued non-additive measure theory. Applications to quantum physics and, more generally, to the fractal theory of the motion, are highlighted. The study details the atomicity problem through key concepts, such as the atom/pseudoatom, atomic/nonatomic measures, and different types of non-additive set-valued multifunctions. Additionally, applications of these concepts are brought to light in the study of the dynamics of complex systems. The first chapter prepares the basics for the next chapters. In the last chapter, applications of atomicity in quantum physics are developed and new concepts, such as the fractal atom are introduced. The mathematical perspective is presented first and the discussion moves on to connect measure theory and quantum physics through quantum measure theory. New avenues of research, such as fractal/multifractal measure theory with potential applications in life sciences, are opened.