Encyclopedia of Materials Characterization


Book Description

"This is a comprehensive volume on analytical techniques used in materials science for the characterization of surfaces, interfaces and thin films. This flagship volume is a unique, stand-alone reference for materials science practitioners, process engineers, students and anyone with a need to know about the capabilities available in materials analysis. An encyclopedia of 50 concise articles, this book will also be a practical companion to the forthcoming books in the series."--Knovel.




A Guide to Materials Characterization and Chemical Analysis


Book Description

Written both for the novice and for the experienced scientist, this miniature encyclopedia concisely describes over one hundred materials methodologies, including evaluation, chemical analysis, and physical testing techniques. Each technique is presented in terms of its use, sample requirements, and the engineering principles behind its methodology. Real life industrial and academic applications are also described to give the reader an understanding of the significance and utilization of technique. There is also a discussion of the limitations of each technique.




Concise Encyclopedia of Materials Characterization


Book Description

To use materials effectively, their composition, degree of perfection, physical and mechanical characteristics, and microstructure must be accurately determined. This concise encyclopledia covers the wide range of characterization techniques necessary to achieve this. Articles included are not only concerned with the characterization techniques of specific materials such as polymers, metals, ceramics and semiconductors but also techniques which can be applied to materials in general. The techniques described cover bulk methods, and also a number of specific methods to study the topography and composition of surface and near-surface regions. These techniques range from the well-established and traditional to the very latest including: atomic force microscopy; confocal optical microscopy; gamma ray diffractometry; thermal wave imaging; x-ray diffraction and time-resolved techniques. This unique concise encyclopedia comprises 116 articles by leading experts in the field from around the world to create the ideal guide for materials scientists, chemists and engineers involved with any aspect of materials characterization. With over 540 illustrations, extensive cross-referencing, approximately 900 references, and a detailed index, this concise encyclopedia will be a valuable asset to any materials science collection.




Encyclopedia of Materials


Book Description




Concise Encyclopedia of the Structure of Materials


Book Description

This Concise Encyclopedia draws its material from the award-winning Encyclopedia of Materials: Science and Technology, and includes updates and revisions not available in the original set. This customized collection of articles provides a handy reference for materials scientists and engineers with an interest in the structure of metals, polymers, ceramics and glasses, biomaterials, wood, paper, and liquid crystals.Materials science and engineering is concerned with the relationship between the properties and structure of materials. In this context "structure" may be defined on the atomic scale in the case of crystalline materials, on the molecular scale (in the case of polymers, for example), or on the microscopic scale. Each of these definitions has been applied in making the present selection of articles.* Brings together articles from the Encyclopedia of Materials: Science & Technology that focus on the structure of materials at the atomic, molecular and microscopic levels, plus recent updates* Every article has been commissioned and written by an internationally recognized expert and provides a concise overview of a particular aspect of the field * Extensive bibliographies, cross-referencing and indexes guide the user to the most relevant reading in the primary literature




Concise Encyclopedia of Materials Characterization


Book Description

Hardbound. To use materials effectively, their composition, degree of perfection, physical and mechanical characteristics, and microstructure must be accurately determined. This concise encyclopledia covers the wide range of characterization techniques necessary to achieve this.Articles included are not only concerned with the characterization techniques of specific materials such as polymers, metals, ceramics and semiconductors but also techniques which can be applied to materials in general.The techniques described cover bulk methods, and also a number of specific methods to study the topography and composition of surface and near-surface regions. These techniques range from the well-established and traditional to the very latest including: atomic force microscopy; confocal optical microscopy; gamma ray diffractometry; thermal wave imaging; x-ray diffraction and time-resolved techniques.This unique concise encyclopedia comprises 116 articles




Concise Encyclopedia of Advanced Ceramic Materials


Book Description

Advanced ceramics cover a wide range of materials which are ceramic by nature but have been developed in response to specific requirements. This encyclopedia collects together 137 articles in order to provide an up-to-date account of the advanced ceramic field. Some articles are drawn from the acclaimed Encyclopedia of Materials Science and Engineering, often revised, and others have been newly commissioned. The Concise Encyclopedia of Advanced Ceramic Materials aims to provide a comprehensive selection of accessible articles which act as an authoritative guide to the subject. The format is designed to help the readers form opinions on a particular subject. Arranged alphabetically, with a broad subject range, the articles are diverse in character and style, thereby stimulating further discussion. Topics covered include survey articles on glass, hot pressing, insulators, powders, and many are concerned with specific chemical systems and their origins, processing and applications. The Concise Encyclopedia of Advanced Ceramic Materials will be invaluable to materials scientists, researchers, educators and industrialists working in technical ceramics.




Materials Characterization


Book Description

This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.




X-Ray Line Profile Analysis in Materials Science


Book Description

X-ray line profile analysis is an effective and non-destructive method for the characterization of the microstructure in crystalline materials. Supporting research in the area of x-ray line profile analysis is necessary in promoting further developments in this field. X-Ray Line Profile Analysis in Materials Science aims to synthesize the existing knowledge of the theory, methodology, and applications of x-ray line profile analysis in real-world settings. This publication presents both the theoretical background and practical implementation of x-ray line profile analysis and serves as a reference source for engineers in various disciplines as well as scholars and upper-level students.




Materials Chemistry


Book Description

The 3rd edition of this successful textbook continues to build on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field — in a concise format. The 3rd edition offers significant updates throughout, with expanded sections on sustainability, energy storage, metal-organic frameworks, solid electrolytes, solvothermal/microwave syntheses, integrated circuits, and nanotoxicity. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions.