Encyclopedia of Molecular Biology and Molecular Medicine, Tandemly Repeated Noncoding DNA Sequences to Zinc Finger DNA Binding Motifs


Book Description

This six volume Encyclopedia is the most comprehensive, detailed treatment of molecular biology and molecular medicine available today! The Encyclopedia provides a single-source library of molecular genetics and the molecular basis of life, with a focus on molecular medicine. Genetic screening, gene therapy, structural biology, and the technology and findings of the Human Genome Project are discussed in detail. The articles that comprise the set are designed as self-contained treatments. Each of the nearly 300 articles begins with an outline and a key word section which includes definitions. These features assist the scientist or student who is unfamiliar with a specific subject area. A glossary of basic terms completes each volume and defines the most commonly used terms in molecular biology. Together with the introductory illustrations found in each volume, these definitions enable readers to understand articles without referring to a dictionary, textbook, or other reference.







Tandem Repeats in Genes, Proteins, and Disease


Book Description

The genomes of humans, as well as many other species, are interspersed with hundreds of thousands of tandem repeats of DNA sequences. Those tandem repeats located as codons within open reading frames encode amino acid runs, such as polyglutamine and polyalanine. Tandem repeats have not only been implicated in biological evolution, development and function but also in a large collection of human disorders. In Tandem Repeats in Genes, Proteins, and Disease: Methods and Protocols, expert researchers in the field detail many methods covering the analysis of tandem repeats in DNA, RNA and protein, in healthy and diseased states. This will include molecular genetics, molecular biology, biochemistry, proteomics, biophysics, cell biology, and molecular and cellular approaches to animal models of tandem repeat disorders. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoratative and Practical, Tandem Repeats in Genes, Proteins, and Disease: Methods and Protocols aids scientists in continuing to study the unique methodological challenges that come from repetitive DNA and poly-amino acid sequences.




Anticancer Research


Book Description




Allosteric Inhibition of Zinc Finger Proteins by DNA Binding Polyamides [microform]


Book Description

"Small molecules that can bind selectively to any predetermined DNA sequence in the human genome could potentially be powerful tools for molecular biology and human medicine. Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) are small molecules that bind DNA according to a set of "pairing rules" with affinities and specificities similar to many naturally occurring DNA binding proteins. The study of DNA binding polyamides is further expanded by the development of new monomer pairings and new synthetic methods which allow access to polyamides with varying truncated tails. A new pairing of N-methylpyrazole with N-methylpyrrole increased specificity substantially without loss in affinity. This result indicates that other ring positions, besides the 3-position, can also greatly impact DNA recognition properties. Polyamides having truncated tails are shown to bind DNA with greater generality at the tail positions while maintaining high affinity, and may allow the targeting of a larger number of biologically relevant DNA sequences. Small molecules that bind DNA may offer a general approach to the chemical down- or up-regulation of gene expression by the inhibition or recruitment of transcription factors, respectively. Polyamide-peptide conjugates were synthesized and evaluated for their ability to activate transcription. A greater than 30-fold enhancement over basal levels was observed and activation could be correlated to DNA occupancy levels. Cys2His2 zinc finger proteins are the most common DNA binding motif in higher eukaryotes. We have elucidated an allosteric mechanism for the inhibition of zinc finger proteins, binding purely in the major groove, by Py/Im polyamides. The inhibition of this large class of proteins greatly enlarges the applicability of these minor groove ligands for gene regulation."




Allosteric Inhibition of Zinc Finger Proteins by DNA Binding Polyamides


Book Description

"Small molecules that can bind selectively to any predetermined DNA sequence in the human genome could potentially be powerful tools for molecular biology and human medicine. Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) are small molecules that bind DNA according to a set of "pairing rules" with affinities and specificities similar to many naturally occurring DNA binding proteins. The study of DNA binding polyamides is further expanded by the development of new monomer pairings and new synthetic methods which allow access to polyamides with varying truncated tails. A new pairing of N-methylpyrazole with N-methylpyrrole increased specificity substantially without loss in affinity. This result indicates that other ring positions, besides the 3-position, can also greatly impact DNA recognition properties. Polyamides having truncated tails are shown to bind DNA with greater generality at the tail positions while maintaining high affinity, and may allow the targeting of a larger number of biologically relevant DNA sequences. Small molecules that bind DNA may offer a general approach to the chemical down- or up-regulation of gene expression by the inhibition or recruitment of transcription factors, respectively. Polyamide-peptide conjugates were synthesized and evaluated for their ability to activate transcription. A greater than 30-fold enhancement over basal levels was observed and activation could be correlated to DNA occupancy levels. Cys2His2 zinc finger proteins are the most common DNA binding motif in higher eukaryotes. We have elucidated an allosteric mechanism for the inhibition of zinc finger proteins, binding purely in the major groove, by Py/Im polyamides. The inhibition of this large class of proteins greatly enlarges the applicability of these minor groove ligands for gene regulation."










Molecular Evolution


Book Description

The study of evolution at the molecular level has given the subject of evolutionary biology a new significance. Phylogenetic 'trees' of gene sequences are a powerful tool for recovering evolutionary relationships among species, and can be used to answer a broad range of evolutionary and ecological questions. They are also beginning to permeate the medical sciences. In this book, the authors approach the study of molecular evolution with the phylogenetic tree as a central metaphor. This will equip students and professionals with the ability to see both the evolutionary relevance of molecular data, and the significance evolutionary theory has for molecular studies. The book is accessible yet sufficiently detailed and explicit so that the student can learn the mechanics of the procedures discussed. The book is intended for senior undergraduate and graduate students taking courses in molecular evolution/phylogenetic reconstruction. It will also be a useful supplement for students taking wider courses in evolution, as well as a valuable resource for professionals. First student textbook of phylogenetic reconstruction which uses the tree as a central metaphor of evolution. Chapter summaries and annotated suggestions for further reading. Worked examples facilitate understanding of some of the more complex issues. Emphasis on clarity and accessibility.