Encyclopedia of Optical and Photonic Engineering (Print) - Five Volume Set


Book Description

The first edition of the Encyclopedia of Optical and Photonic Engineering provided a valuable reference concerning devices or systems that generate, transmit, measure, or detect light, and to a lesser degree, the basic interaction of light and matter. This Second Edition not only reflects the changes in optical and photonic engineering that have occurred since the first edition was published, but also: Boasts a wealth of new material, expanding the encyclopedia’s length by 25 percent Contains extensive updates, with significant revisions made throughout the text Features contributions from engineers and scientists leading the fields of optics and photonics today With the addition of a second editor, the Encyclopedia of Optical and Photonic Engineering, Second Edition offers a balanced and up-to-date look at the fundamentals of a diverse portfolio of technologies and discoveries in areas ranging from x-ray optics to photon entanglement and beyond. This edition’s release corresponds nicely with the United Nations General Assembly’s declaration of 2015 as the International Year of Light, working in tandem to raise awareness about light’s important role in the modern world. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]




Encyclopedia of Optical Engineering: Pho-Z, pages 2049-3050


Book Description

Compiled by 330 of the most widely respected names in the electro-optical sciences, the Encyclopedia is destined to serve as the premiere guide in the field with nearly 2000 figures, 560 photographs, 260 tables, and 3800 equations. From astronomy to x-ray optics, this reference contains more than 230 vivid entries examining the most intriguing technological advances and perspectives from distinguished professionals around the globe. The contributors have selected topics of utmost importance in areas including digital image enhancement, biological modeling, biomedical spectroscopy, and ocean optics, providing thorough coverage of recent applications in this continually expanding field.




Encyclopedia of Optical Engineering: Las-Pho, pages 1025-2048


Book Description

Compiled by 330 of the most widely respected names in the electro-optical sciences, the Encyclopedia is destined to serve as the premiere guide in the field with nearly 2000 figures, 560 photographs, 260 tables, and 3800 equations. From astronomy to x-ray optics, this reference contains more than 230 vivid entries examining the most intriguing technological advances and perspectives from distinguished professionals around the globe. The contributors have selected topics of utmost importance in areas including digital image enhancement, biological modeling, biomedical spectroscopy, and ocean optics, providing thorough coverage of recent applications in this continually expanding field.







Colour and the Optical Properties of Materials


Book Description

The updated third edition of the only textbook on colour The revised third edition of Colour and the Optical Properties of Materials focuses on the ways that colour is produced, both in the natural world and in a wide range of applications. The expert author offers an introduction to the science underlying colour and optics and explores many of the most recent applications. The text is divided into three main sections: behaviour of light in homogeneous media, which can largely be explained by classical wave optics; the way in which light interacts with atoms or molecules, which must be explained mainly in terms of photons; and the interaction of light with insulators, semiconductors and metals, in which the band structure notions are of primary concern. The updated third edition retains the proven concepts outlined in the previous editions and contains information on the significant developments in the field with many figures redrawn and new material added. The text contains new or extended sections on photonic crystals, holograms, flat lenses, super-resolution optical microscopy and modern display technologies. This important book: Offers and introduction to the science that underlies the everyday concept of colour Reviews the cross disciplinary subjects of physics, chemistry, biology and materials science, to link light, colour and perception Includes information on many modern applications, such as the numerous different colour displays now available, optical amplifiers lasers, super-resolution optical microscopy and lighting including LEDs and OLEDs Contains new sections on photonic crystals, holograms, flat lenses, super-resolution optical microscopy and display technologies Presents many worked examples, with problems and exercises at the end of each chapter Written for students in materials science, physics, chemistry and the biological sciences, the third edition of Colour and The Optical Properties of Materials covers the basic science of the topic and has been thoroughly updated to include recent advances in the field.




Encyclopedia of Laser Physics and Technology


Book Description

This authoritative two-volume encyclopedia (A-M, N-Z) helps to master the large variety of physical phenomena and technological aspects involved in laser technology and the wider field of photonics. Besides explaining in detail the physical principles and common techniques of laser operation, it also addresses such supplementary topics as ultrashort pulses, optical communications, optoelectronics, general optics, and quantum optics. References to selected scientific articles and textbooks aid readers in their further studies, and the cross-disciplinary approach makes this four-color encyclopedia of huge benefit to a wide audience in industry, government, and academic research.




Engineering Optics 2.0


Book Description

This book provides comprehensive information on the history and status quo of a new research field, which we refer to as Engineering Optics 2.0. The content covers both the theoretical basis and the engineering aspects in connection with various applications. The field of Engineering Optics employs optical theories to practical applications in a broad range of areas. However, the foundation of traditional Engineering Optics was formed several hundred years ago, and the field has developed only very gradually. With technological innovations in both the fabrication and characterization of microstructures, the past few decades have witnessed many groundbreaking changes to the bases of optics, including the generalizing of refraction, reflection, diffraction, radiation and absorption theories. These new theories enable us to break through the barriers in traditional optical technologies, yielding revolutionary advances in traditional optical systems such as microscopes, telescopes and lithography systems.




Infrared Thermal Imaging


Book Description

This new up-to-date edition of the successful handbook and ready reference retains the proven concept of the first, covering basic and advanced methods and applications in infrared imaging from two leading expert authors in the field. All chapters have been completely revised and expanded and a new chapter has been added to reflect recent developments in the field and report on the progress made within the last decade. In addition there is now an even stronger focus on real-life examples, with 20% more case studies taken from science and industry. For ease of comprehension the text is backed by more than 590 images which include graphic visualizations and more than 300 infrared thermography figures. The latter include many new ones depicting, for example, spectacular views of phenomena in nature, sports, and daily life.




Optical Properties of Solar Absorber Materials and Structures


Book Description

This book presents an overview of both the theory and experimental methods required to realize high efficiency solar absorber devices. It begins with a historical description of the study of spectrally selective solar absorber materials and structures based on optical principles and methods developed over the past few decades. The optical properties of metals and dielectric materials are addressed to provide the background necessary to achieve high performance of the solar absorber devices as applied in the solar energy field. In the following sections, different types of materials and structures, together with the relevant experimental methods, are discussed for practical construction and fabrication of the solar absorber devices, aiming to maximally harvest the solar energy while at the same time effectively suppressing the heat-emission loss. The optical principles and methods used to evaluate the performance of solar absorber devices with broad applications in different physical conditions are presented. The book is suitable for graduate students in applied physics, and provides a valuable reference for researchers working actively in the field of solar energy.