Encyclopedia of Statistical Sciences , Update


Book Description

Keeping pace with the latest developments in all branches of statistical science. Encyclopedia of Statistical Sciences is the number one source of information on statistical theory, methods, and applications for researchers and clinicians. This new volume is the last of three updates designed to bring the Encyclopedia in line with new and emerging topics and important advances in statistical science made over the past decade. Each self-contained entry is written by a leader in the field and easily understood by readers with a modest statistical background. In addition to the main selections, which feature fascinating discussions of developments in various branches of the statistical sciences, readers will find a series of shorter entries ranging in subject matter from the lives of pioneers in statistics to updates of earlier articles and reviews of statistical agencies and journals. Up-to-date bibliographies, thorough cross-referencing, and extensive indexing facilitate quick access to specific information and provide an indispensable platform for further study and research. A cumulative index and listing of all the entries in the 13 volumes of the Encyclopedia, together with the corresponding authors, are included. With the publication of this update installment, the Encyclopedia of Statistical Sciences retains its position as the only cutting-edge reference of choice for those working in statistics, probability theory, biostatistics, quality control, and economics and in applications of statistical methods in sociology, engineering, computer and communication science, biomedicine, psychology, and many other areas.




Statistical Sciences and Data Analysis


Book Description

The Third Pacific Area Statistical Conference was held under the auspices of the Pacific Statistical Institute and with the support and cooperation of the Foundation for Advancement of International Science, the Japan Statistical Society and the Institute of Statistical Mathematics. The main theme of the conference was ''Statistical Sciences and Data Analysis''. The purpose was to bring together researchers in statistics and related fields to exchange results and problems in topics of mutual interest. The papers in this volume have been presented at the conference and have been carefully refereed and edited before their inclusion in the proceedings.




Handbook of Graphical Models


Book Description

A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.




Models, Mathematics, and Methodology in Economic Explanation


Book Description

This book provides a practitioner's foundation for the process of explanatory model building, breaking down that process into five stages. Donald W. Katzner presents a concrete example with unquantified variable values to show how the five-stage procedure works. He describes what is involved in explanatory model building for those interested in this practice, while simultaneously providing a guide for those actually engaged in it. The combination of Katzner's focus on modeling and on mathematics, along with his focus on the explanatory performance of modeling, promises to become an important contribution to the field.




Adaptive Internal Models for Motor Control and Visual Prediction


Book Description

In this thesis, computational models of adaptive motor control and visuomotor coordination are explored and developed. These models relate to hypotheses on how sensorimotor processing in biological organisms might be organized at an abstract level; furthermore, these models and their specific implementations offer solutions for technical problems in the domain of adaptive robotics. For this reason, both biological and technical aspects are addressed. On the one hand, this thesis focuses on the learning of so-called internal models (Miall et al., 1993; Kawato, 1999): "forward models", which predict the sensory consequences of the agent''s own actions, and "inverse models", which act like motor controllers and generate motor commands. In this area, new strategies and algorithms for learning are suggested and tested on both simulated and real-world robot setups. This work contributes to the understanding of the "building blocks" of integrated sensorimotor processing. On the other hand, this thesis suggests complex models of sensorimotor coordination: In a study on the grasping to extrafoveal targets with a robot arm, it is explored how forward and inverse models may interact, and a second study addresses the question how visual perception of space might arise from the learning of sensorimotor relationships. The theoretical part of the thesis starts with a close view on sensorimotor processing. The cognitivist approach and the embodied approach to sensorimotor processing are contrasted with each other, providing evidence from psychological and neurophysiological studies in favor of the latter. It is outlined how the application of robots fits into the embodied approach as research method. Furthermore, internal models are defined in a formal way, and an overview of their role in models of perception and cognition is provided, with a special emphasis on anticipation and predictive forward models. Afterwards, a thorough overview of internal models in adaptive motor control (covering both kinematics and dynamics) and a novel learning strategy for kinematic control problems ("learning by averaging") are presented. The experimental work comprises four different studies. First, a detailed comparison study of various motor learning strategies for kinematic problems is presented. The performance of "feedback error learning" (Kawato et al., 1987), "distal supervised learning" (Jordan and Rumelhart, 1992), and "direct inverse modeling" (e.g., Kuperstein, 1987) is directly compared on several learning tasks from the domain of eye and arm control (on simulated setups). Moreover, an improved version of direct inverse modeling on the basis of abstract recurrent networks and learning by averaging are included in the comparison. The second study is dedicated to the learning of a visual forward model for a robot camera head. This forward model predicts the visual consequences of camera movements for all pixels of the camera image. The presented learning algorithm is able to overcome the two main difficulties of visual prediction: first, the high dimensionality of the input and output space, and second, the need to detect which part of the visual output is non-predictable. To demonstrate the robustness of the presented learning algorithm, the work is not carried out on plain camera images, but on distorted "retinal images" with a decreasing resolution towards the corners. In the third experimental chapter, a model for grasping to extrafoveal (non-fixated) targets is presented. It is implemented on a robot setup, consisting of a camera head and a robot arm. This model is based on the premotor theory of attention (Rizzolatti et al., 1994) and adds one specific hypothesis: Attention shifts caused by saccade programming imply a prediction of the retinal foveal images after the saccade. For this purpose, the visual forward model from the preceding study is used. Based on this model, several grasping modes are compared; the obtained results are qualitatively congruent with the performance that can be expected from human subjects. The fourth study is based on the theory that visual perception of space and shape is based on an internal simulation process which relies on forward models (Moeller, 1999). This theory is tested by synthetic modeling in the task domain of block pushing with a robot arm.