Endothelial Signaling in Development and Disease


Book Description

This book surveys healthy and diseased vascular systems in a multitude of model organisms and systems. It explores a plethora of functions, characteristics, and pathologies of the vascular system such as angiogenesis, fibroblast growth factor signaling, lymphangiogenesis, junctional signaling, the extracellular matrix, vascular permeability, leukocyte extravasation, axon guidance factors, the angiopoietin system, and chronic obstructive lung disease. Following a preface from leading researcher Dr. Holger Gerhardt, the text is divided into three sections- the first examining the development of the vascular system in a variety of contexts, the second delving into its homeostatic characteristics, and the third discussing its pathophysiologies. The sixteen chapters, which represent international clinical and research perspectives, highlight the importance of molecular and signaling pathways for translational basic science and clinical medicine. Additionally, the text explores new and exciting fields in vascular biology research. Comprehensive in both content and approach, Vascular Signaling in Health and Disease is ideal for graduate students, researchers, and clinicians interested in vascular biology, pneumology, and molecular biology.




Endothelial Signaling in Development and Disease


Book Description

This book surveys healthy and diseased vascular systems in a multitude of model organisms and systems. It explores a plethora of functions, characteristics, and pathologies of the vascular system such as angiogenesis, fibroblast growth factor signaling, lymphangiogenesis, junctional signaling, the extracellular matrix, vascular permeability, leukocyte extravasation, axon guidance factors, the angiopoietin system, and chronic obstructive lung disease. Following a preface from leading researcher Dr. Holger Gerhardt, the text is divided into three sections- the first examining the development of the vascular system in a variety of contexts, the second delving into its homeostatic characteristics, and the third discussing its pathophysiologies. The sixteen chapters, which represent international clinical and research perspectives, highlight the importance of molecular and signaling pathways for translational basic science and clinical medicine. Additionally, the text explores new and exciting fields in vascular biology research. Comprehensive in both content and approach, Vascular Signaling in Health and Disease is ideal for graduate students, researchers, and clinicians interested in vascular biology, pneumology, and molecular biology.




Endothelial Signaling in Vascular Dysfunction and Disease


Book Description

Endothelial Signaling in Vascular Dysfunction and Disease: From Bench to Bedside provides a detailed understanding of the endothelium, its activation and their link to some common clinical disorders. In addition, the book covers earlier discoveries, including those from the last and 19th centuries. It is split into five sections that cover the vascular tree as an integrative structure, the endothelium in inflammation, endothelial signaling, activation and toxicity with chemotherapy, radiation induced endothelial dysfunction and vascular disease, and therapies in combating vascular diseases. Each section is discussed with a translational approach in order to make the content truly applicable. This book is a valuable source for basic researchers, clinicians in the fields of Oncology, Cardiovascular Medicine and Radiology, and members of the biomedical field who are conducting studies related to the endothelium and vascular disease. Discusses the most relevant discoveries in endothelial biology and their link to manifestations of clinical disease Presents history and diagrams in each section to highlight the original biological discovery and its link of clinical manifestations of vascular disease Includes recent findings on the relationship between endothelial signaling, chemotherapy and radiation induced endothelial dysfunction




The Endothelium


Book Description

The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References




Regulation of Endothelial Barrier Function


Book Description

The vascular endothelium lining the inner surface of blood vessels serves as the first interface for circulating blood components to interact with cells of the vascular wall and surrounding extravascular tissues. In addition to regulating blood delivery and perfusion, a major function of vascular endothelia, especially those in exchange microvessels (capillaries and postcapillary venules), is to provide a semipermeable barrier that controls blood–tissue exchange of fluids, nutrients, and metabolic wastes while preventing pathogens or harmful materials in the circulation from entering into tissues. During host defense against infection or tissue injury, endothelial barrier dysfunction occurs as a consequence as well as cause of inflammatory responses. Plasma leakage disturbs fluid homeostasis and impairs tissue oxygenation, a pathophysiological process contributing to multiple organ dysfunction associated with trauma, infection, metabolic disorder, and other forms of disease. In this book, we provide an updated overview of microvascular endothelial barrier structure and function in health and disease. The discussion is initiated with the basic physiological principles of fluid and solute transport across microvascular endothelium, followed by detailed information on endothelial cell–cell and cell–matrix interactions and the experimental techniques that are employed to measure endothelial permeability. Further discussion focuses on the signaling and molecular mechanisms of endothelial barrier responses to various stimulations or drugs, as well as their relevance to several common clinical conditions. Taken together, this book provides a comprehensive analysis of microvascular endothelial cell and molecular pathophysiology. Such information will assist scientists and clinicians in advanced basic and clinical research for improved health care.




Mechanisms of Vascular Disease


Book Description

New updated edition first published with Cambridge University Press. This new edition includes 29 chapters on topics as diverse as pathophysiology of atherosclerosis, vascular haemodynamics, haemostasis, thrombophilia and post-amputation pain syndromes.







Vascular Endothelium


Book Description

With its innovative topical approach, bestselling COMPARATIVE CRIMINAL JUSTICE SYSTEMS, 5e offers a comprehensive analysis as it compares the various criminal justice systems throughout the world using six model countries: China, England, France, Germany, Japan, and Saudi Arabia. The text illustrates the different types of law and justice systems while exploring the historical, political, economic, social, and cultural influences on each system. This unique approach examines important aspects of each type of justice system--common law, civil law, socialist law, and sacred (Islamic) law--to give students a thorough understanding of the similarities and differences of each system without overloading them with too much information. Completely up to date, the Fifth Edition includes the latest trends and issues in international juvenile justice, policing, and terrorism, including expanded coverage of such high- profile topics as human trafficking, Internet pornography, identity theft, transnational policing, and more.




Vascular Development


Book Description

The formation of blood vessels is an essential aspect of embryogenesis in vertebrates. It is a central feature of numerous post-embryonic processes, including tissue and organ growth and regeneration. It is also part of the pathology of tumour formation and certain inflammatory conditions. In recent years, comprehension of the molecular genetics of blood vessel formation has progressed enormously and studies in vertebrate model systems, especially the mouse and the zebrafish, have identified a common set of molecules and processes that are conserved throughout vertebrate embryogenesis while, in addition, highlighting aspects that may differ between different animal groups. The discovery in the past decade of the crucial role of new blood vessel formation for the development of cancers has generated great interest in angiogenesis (the formation of new blood vessels from pre-existing ones), with its major implications for potential cancer-control strategies. In addition, there are numerous situations where therapeutic treatments either require or would be assisted by vasculogenesis (the de novo formation of blood vessels). In particular, post-stroke therapies could include treatments that stimulate neovascularization of the affected tissues. The development of such treatments, however, requires thoroughly understanding the developmental properties of endothelial cells and the basic biology of blood vessel formation. While there are many books on angiogenesis, this unique book focuses on exactly this basic biology and explores blood vessel formation in connection with tissue development in a range of animal models. It includes detailed discussions of relevant cell biology, genetics and embryogenesis of blood vessel formation and presents insights into the cross-talk between developing blood vessels and other tissues. With contributions from vascular biologists, cell biologists and developmental biologists, a comprehensive and highly interdisciplinary volume is the outcome.




Intercellular Signaling in Development and Disease


Book Description

"Cell signaling, which is also often referred to as signal transduction or, in more specialized cases, transmembrane signaling, is the process by which cells communicate with their environment and respond temporally to external cues that they sense there. All cells have the capacity to achieve this to some degree, albeit with a wide variation in purpose, mechanism, and response. At the same time, there is a remarkable degree of similarity over quite a range of species, particularly in the eukaryotic kingdom, and comparative physiology has been a useful tool in the development of this field. The central importance of this general phenomenon (sensing of external stimuli by cells) has been appreciated for a long time, but it has truly become a dominant part of cell and molecular biology research in the past three decades, in part because a description of the dynamic responses of cells to external stimuli is, in essence, a description of the life process itself. This approach lies at the core of the developing fields of proteomics and metabolomics, and its importance to human and animal health is already plainly evident"--Provided by publisher.