Energy Efficiency in Motor Driven Systems


Book Description

This book reports the state of the art of energy-efficient electrical motor driven system technologies, which can be used now and in the near future to achieve significant and cost-effective energy savings. It includes the recent developments in advanced electrical motor end-use devices (pumps, fans and compressors) by some of the largest manufacturers. Policies and programs to promote the large scale penetration of energy-efficient technologies and the market transformation are featured in the book, describing the experiences carried out in different parts of the world. This extensive coverage includes contributions from relevant institutions in the Europe, North America, Latin America, Africa, Asia, Australia and New Zealand.




Energy Efficiency Improvements in Electric Motors and Drives


Book Description

The reduction of energy consumption through improvements in energy efficiency has become an important goal for all countries, in order to improve the efficiency of the economy, to increase energy supply security, and to reduce the emissions of CO and other pollutants caused by power· generation. 2 Electric motors use over half of all electricity consumed in developed countries. Typically 60-80% of the electricity which is used in the industrial sector and about 35% of the electricity used in the commercial sector in the European Union is consumed by motors. In industry, a motor consumes an annual quantity of electricity which corresponds to approximately 5 times its purchase price, throughout its whole life of aroun~ 12 to 20 years. Motors are by far the most important type of electric load. They are used in all sectors and in a wide range of applications, namely the following: fans, compressors, pumps, mills, winders, elevators, transports, home appliances, and office equipment, etc. It is their wide use that makes motor drive systems one of the main targets to achieve significant energy savings. As motors are the largest USers of electrical energy, even small efficiency improvements will produce very large energy savings.







Energy Efficiency in Electric Motors, Drives, Power Converters and Related Systems


Book Description

Today, there is a great deal of attention focused on sustainable growth worldwide. The increase in efficiency in the use of energy may even, in this historical moment, bring greater benefit than the use of renewable energies. Electricity appears to be the most sustainable of energies and the most promising hope for a planet capable of growing without compromising its own health and that of its inhabitants. Power electronics and electrical drives are the key technologies that will allow energy savings through the reduction of energy losses in many applications. This Special Issue has collected several scientific contributions related to energy efficiency in electrical equipment. Some articles are dedicated to the use and optimization of permanent magnet motors, which allow obtaining the highest level of efficiency. Most of the contributions describe the energy improvements that can be achieved with power electronics and the use of suitable control techniques. Last but not least, some articles describe interesting solutions for hybrid vehicles, which were created mainly to save energy in the smartest way possible.




The Motor Challenge


Book Description




Energy-efficient Motor Systems


Book Description

Motors use more than half of all electricity. This book outlines an approach for increasing motor and motor system efficiency through high-efficiency motors, optimized controls, improved component sizing and repair, better transmission hardware, and more comprehensive monitoring and maintenance. In addition to explaining technical opportunities in language understandable to non-engineers, the book reviews what is known about the existing motor stock and its use, chronicles experience to date with drive power programs and policies, and offers recommendations for future efforts. Full application of the measures described can cut U.S. electricity demand by up to 20 percent, save motor users and utilities billions of dollars, reduce pollutant emissions, and enhance productivity. The book was written by an interdisciplinary team of engineers, energy analysts, and program planners who collectively have over 50 years of experience in the energy efficiency field.




Electrical Motor Products


Book Description

Electrical motor products reviews the energy efficiency management laws for electrical motor products in United States, European Union (EU) and China. The energy efficiency certification requirements for the electrical motor products vary from country to country and are summarised here. International standards, testing methods and certification requirements for specific electrical motor products are discussed, including electric motors, pumps and fans. Finally, methods for improving energy efficiency are examined. - Reviews the energy efficiency management laws for electrical motor products in United States, European Union (EU) and China - Highlights the importance of energy efficiency for electrical motor products - Documents energy efficiency certification requirements for electrical motor products and how they vary from country to country




Energy-Efficient Electric Motors, Revised and Expanded


Book Description

This detailed reference provides guidelines for the selection and utilization of electric motors for improved reliability, performance, energy-efficiency, and life-cycle cost. Completely revised and expanded, the book reflects the recent state of the field, as well as recent developments in control electronics, the economics of energy-efficient motors and systems, and advanced power electronic drivers. It includes five new chapters covering key topics such as the fundamentals of power electronics applicable to electric motor drives, adjustable speed drives and their applications, advanced switched reluctance motor drives, and permanent magnet and brushless DC motor drives.




Twin-Control


Book Description

This open access book summarizes the results of the European research project “Twin-model based virtual manufacturing for machine tool-process simulation and control” (Twin-Control). The first part reviews the applications of ICTs in machine tools and manufacturing, from a scientific and industrial point of view, and introduces the Twin-Control approach, while Part 2 discusses the development of a digital twin of machine tools. The third part addresses the monitoring and data management infrastructure of machines and manufacturing processes and numerous applications of energy monitoring. Part 4 then highlights various features developed in the project by combining the developments covered in Parts 3 and 4 to control the manufacturing processes applying the so-called CPSs. Lastly, Part 5 presents a complete validation of Twin-Control features in two key industrial sectors: aerospace and automotive. The book offers a representative overview of the latest trends in the manufacturing industry, with a focus on machine tools.




Design and Development of Efficient Energy Systems


Book Description

There is not a single industry which will not be transformed by machine learning and Internet of Things (IoT). IoT and machine learning have altogether changed the technological scenario by letting the user monitor and control things based on the prediction made by machine learning algorithms. There has been substantial progress in the usage of platforms, technologies and applications that are based on these technologies. These breakthrough technologies affect not just the software perspective of the industry, but they cut across areas like smart cities, smart healthcare, smart retail, smart monitoring, control, and others. Because of these “game changers,” governments, along with top companies around the world, are investing heavily in its research and development. Keeping pace with the latest trends, endless research, and new developments is paramount to innovate systems that are not only user-friendly but also speak to the growing needs and demands of society. This volume is focused on saving energy at different levels of design and automation including the concept of machine learning automation and prediction modeling. It also deals with the design and analysis for IoT-enabled systems including energy saving aspects at different level of operation. The editors and contributors also cover the fundamental concepts of IoT and machine learning, including the latest research, technological developments, and practical applications. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of IoT and machine technology, this is a must-have for any library.